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Transcendental dynamics
If f : C→ C (or to Ĉ) has an essential singularity at infinity we say
that f is transcendental.

Transcendental maps may have Fatou components that are not basins
of attraction nor rotation domains:

U is a Baker domain of period 1 if f n |U→∞ loc. unif.

U is a wandering domain if f n(U) ∩ f m(U) = ∅ for all n 6= m.

z + a + b sin(z) [Figures: Christian Henriksen] z + 2π + sin(z)
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Transcendental dynamics

The set S(f ) of singularities of f −1 consists of critical values and
asymtpotic values (and the closure of such).

A critical value is the image of a critical point, i.e. v = f (c) with
f ′(c) = 0.

A point a ∈ Ĉ is an asymptotic value if there exists a curve
γ(t)→∞ such that f (γ(t))→ a. (Morally, a has infinitely many
preimages collapsed at infinity).

Example: z = 0 for f (z) = λez .

f : C \ f −1(S(f )) −→ C \ S(f ) is a covering map of infinite degree.

Define the postsingular set of f as

P(f ) = ∪s∈S ∪n≥0 f n(s).
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Special classes

The Eremenko-Lyubich class

B = {f ETF (or MTF) such that S(f ) is bounded}

Example: z 7→ λ z
sin(z) .

Maps in class B have no Baker domains and NO ESCAPING
WANDERING DOMAINS (Escaping set ⊂ J(f )).

If U is a wandering domain, and L(U) is the set of limit functions of f n on
U, then, all limit functions are constant and

U is


escaping if L(U) = {∞}
oscillating if {∞, a} ⊂ L(U) for some a ∈ C.

“bounded” if ∞ /∈ L(U).
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Existence of wandering domains

Question

Can maps in class B have wandering domains at all?

Answer: yes.

Theorem (Bishop’15)

There exists an entire map f ∈ B such that f has an (oscillating)
wandering domain.
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Univalent WD in class B

Bishop’s wandering domain contains critical points inside of arbitrarily high
order.

Question

Is there an oscillating wandering domain with no singular values inside any
of its iterates?

Answer: yes.

Theorem A (F-Lazebnik-Jarque’17)

There exists an ETF f ∈ B such that f has a wandering domain U on
which f n|U is univalent for all n ≥ 0.
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Constructing entire functions
Bishop’s qc-folding construction

Let f : C→ C be a transcendental entire function with

exactly two critical values, say −1 and +1

no finite asymptotic values

Question: What does f look like ?
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Bishop’s qc-folding construction

T = f −1([−1,+1]) is an infinite bipartite tree.

f

-1 +1-1 +1

ℂℂ
T
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Bishop’s qc-folding construction

T = f −1([−1,+1]) is an infinite bipartite tree.

f

ℍ r

-1 +1-1 +1

ℂ

cosh

ℂ

i(2k)π
i(2k+1)π

T

cosh : Hr → C\[−1,+1] is a universal cover.
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Bishop’s qc-folding construction

T = f −1([−1,+1]) is an infinite bipartite tree.

f

ℍ r

-1 +1-1 +1

ℂ

cosh

ℂ

τ
i(2k)π
i(2k+1)π

T

Ω

∀Ω c.c. of C\T , τ|Ω = (cosh−1 ◦f|Ω) : Ω→ Hr is conformal.
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Bishop’s qc-folding construction

Conversely: How to construct f from (T , τ) ?

More precisely: Given

an infinite bipartite tree T ⊂ C with “good enough” geometry

a map τ such that τ|Ω : Ω→ Hr is conformal, ∀Ω c.c. of C\T

Question: Does there exist an entire function f : C→ C such that
f = cosh ◦τ ?

Main problem: In general, cosh ◦τ is not continuous across T .
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Bishop’s qc-folding construction

Strategy:

Step 1: Modify (T , τ) in a small neighborhood T (r0) of T .

More precisely, replace (T , τ) by (T ′, η) such that

T ⊂ T ′ ⊂ T (r0)

η = τ off T (r0)

η|Ω′ : Ω′ → Hr is K -quasiconformal, ∀Ω′ c.c. of C\T ′

cosh ◦η continuous across T ′ (quasiregular map)

Step 2: Apply MRMT .

Obtain a qc map φ (the integrating map of µcosh ◦η) so that
f := cosh ◦η ◦ φ−1 is entire. In particular

f ◦ φ = cosh ◦τ off T (r0)
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Bishop’s qc-folding construction

ℂ ℍr

τ

T

Ω
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Bishop’s qc-folding construction

ℂ ℍr

τ

η

T(r )0 Ω
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Bishop’s qc-folding construction

ℂ ℍr

τ

-1 +1

ℂ

cosh

η

T(r )0 Ω
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Bishop’s qc-folding construction

ℂ ℍr

τ

-1 +1

ℂ

coshϕ
ℂ

ϕ(T')

η

ϕ(T)

T(r )0 Ω
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Bishop’s qc-folding construction

ℂ ℍr

τ

-1 +1

ℂ

coshϕ
ℂ

f

ϕ(T')

η

ϕ(T)

T(r )0 Ω
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Bounded geometry
Definition: We say that T has bounded geometry if

edges of T are C2 with uniform bounds

angles between adjacent edges are uniformly bounded away from 0

∀e, f adjacent edges, 1
M 6 diam(e)

diam(f ) 6 M

∀e, f non-adjacent edges, diam(e)
dist(e,f ) 6 M

T(r)

z

dist(z,e)
diam(e) =r

e

T (r) =
⋃

e edge of T

{
z ∈ C / dist(z , e) < r diam(e)

}
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Bounded geometry

Lemma

If T has bounded geometry, then ∃r0 > 0 such that

∀Ω c.c. of C\T , ∀ square Q ⊂ Hr that has a τ|Ω-edge as one side,

Q ⊂ τ|Ω
(
T (r0) ∩ Ω

)

Ω

ℂ ℍr

τ

T(r )0

Every edge has two τ -sizes!!!
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Bishop’s Theorem

Theorem (Bishop’12)

If (T , τ) satisfies the following conditions

1 T has bounded geometry

2 every edge has τ -size > π

then ∃ an entire function f and a quasiconformal map φ such that

f ◦ φ = cosh ◦τ off T (r0)

Moreover

f has exactly two critical values, −1 and +1

f has no finite asymptotic values

φ(T ) ⊂ f −1([−1,+1]) (= φ(T ′))

∀c critical point of f , degloc(c, f ) = deg(c , φ(T ′))
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Bishop’s qc-folding construction

The main technical difficulty is to find a quasiconformal map ψ from a
square to itself such that{

ψ maps the left side to an edge of length π
ψ is the identity on the right side

Solution: Add some extra edges and “unfold”.

ψ

3π π

ψ−1 is called a quasiconformal folding.
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Bishop’s qc-folding construction – adding singular values

Generalization: We may also construct f with

more critical values than only −1 and +1

some finite asymptotic values

arbitrary high degree critical points

Let T be an infinite bipartite graph.

-1 +1

ℂℂ

f

L R

D

D

R

R

R

R

R

L
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Bishop’s qc folding construction - adding singular values

The c.c. of C\T are sorted into three different types:

R-components: τ|Ω : Ω→ Hr conformally
D-components: τ|Ω : Ω→ D conformally
L-components: τ|Ω : Ω→ H` conformally

R Ω
τ|Ω−−−→ Hr

cosh−−−→ C\[−1,+1]

D
τ|Ω−−−→

z 7→zdΩ−−−→ (D, 0)
ρΩ−−−→ (D,wΩ)

L
τ|Ω−−−→

exp−−−→ (D, 0)
ρΩ−−−→ (D, vΩ)

where ρΩ : D→ D is quasiconformal with ρΩ(z) = z , ∀z ∈ ∂D.
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ρΩ−−−→ (D, vΩ)

where ρΩ : D→ D is quasiconformal with ρΩ(z) = z , ∀z ∈ ∂D.
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Constructiong the oscillating wandering domains in class B

f = F◦φ−1 with

{
F : C→ C quasiregular (transcendental)
φ : C→ C quasiconformal so that φ∗µ0 = F ∗(µ0)

F is constructed using an infinite graph.

S+

D1 2D 3D 5D4D
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Oscillating wandering domains in class B

F : S+ λ sinh−−−−−→ Hr
cosh−−−−−→ C\[−1,+1]

z |−−−−−−−−−−−−−−−−−−−→ cosh(λ sinh(z))

S+

-1 +1

λsinh

ℂ

ℍr
cosh

λ > 0 is fixed so that f n
(

1
2

)
−−−→
n→+∞

+∞ very fast.
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Oscillating wandering domains in class B
For every n > 1,

F : (Dn, zn)
z 7→(z−zn)dn−−−−−→ (D, 0)

ρn−−−−−→ (D,wn)
z |−−−−−−−−−−−−−−−−−−−→ ρn

(
(z − zn)dn

)
with


ρn : D→ D quasiconformal
ρn(0) = wn

supp(µρn) ⊂
{

1
2 6 |z | 6 1

}

Dn
(z- )

dnzn

� �

� � �

0zn

wn

1/2

ρn

for some parameters dn −−−→
n→+∞

+∞ and wn −−−→
n→∞

1
2 .

N. Fagella, X. Jarque and K. Lazebnik (UB) Univalent WD RIMS Kyoto 20 / 32



Oscillating wandering domains in class B
For every n > 1,

F : (Dn, zn)
z 7→(z−zn)dn−−−−−→ (D, 0)

ρn−−−−−→ (D,wn)
z |−−−−−−−−−−−−−−−−−−−→ ρn

(
(z − zn)dn

)
with


ρn : D→ D quasiconformal
ρn(0) = wn

supp(µρn) ⊂
{

1
2 6 |z | 6 1

}

Dn
(z- )

dnzn

� �

� � �

0zn

wn

1/2

ρn

for some parameters dn −−−→
n→+∞

+∞ and wn −−−→
n→∞

1
2 .

N. Fagella, X. Jarque and K. Lazebnik (UB) Univalent WD RIMS Kyoto 20 / 32



Oscillating wandering domains in class B
Using Bishop’s construction F may be extended to a quasiregular map
F : C→ C such that:

∀z ∈ C, F (−z) = F (z) and F (z) = F (z)

Crit(F ) = {−1,+1} ∪ {wn, n > 1} ∪
{

1
2

}
⊂ D with wn −−−→

n→+∞

1
2

Asym(F ) = ∅

supp (F ∗(µ0)) is small enough

in order that φ|S+ ≈ IdS+

S+

D1 2D 3D 5D4D

-1 +1

F

Let f = F ◦ φ with φ : C→ C quasiconformal so that µφ−1 = F ∗(µ0).
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Oscillating wandering domains in class B

S+

n+1D

1/2 f(1/2) f  (1/2)nn-1f     (1/2)
n+1f      (1/2)

Dn
~ ~

f n(Un) = 1
4 D̃n and inradius(Un) > C .

(
df n

dx

∣∣
x= 1

2

)−1

f n+1(Un+1) = 1
4 D̃n+1 and inradius(Un+1) > C .

(
df n+1

dx

∣∣
x= 1

2

)−1

w̃n ∈ f
(

1
4 D̃n

)
and diam

(
f
(

1
4 D̃n

))
6 C ′.

(
1
4

)d̃n
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Oscillating wandering domains in class B

This is an iterative process, where Bishop’s theorem is applied
infinitely many times.

The parameters wn, dn are adjusted successively obtaining a new map
f , everytime closer to the previous one, converging to a final map f .

The correction map φ at every step is closer and closer to the identity,
since the support of µ decreases exponentially.
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Modifying F to construct a univalent wandering domain
The new map on D−components

Consider the map
D −→ D
z 7−→ zm + δz

m − 1 critical points which tend to ∂D when m→∞
m − 1 critical values which tend to δ in modulus when m→∞.

Let γ = {|z | = 3
2} and then int(γ−1) contains all critical points.

γ

γ−1
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The new map on D−components

Define a quasiregular map ψ on D

ψm =

{
zm + δz , if z ∈ int

(
γ−1

)
zm if z ∈ ∂D,

and linear interpolation in between int
(
γ−1

)
and ∂D.

Claim 1

The dilatation of ψm is

uniformly bounded independently of m and δ << 1
2 .

supported on a region whose area tends to 0 as m→∞.

Idea of the proof
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General strategy

We resemble Bishop’s construction with the following modifications:

Parameters λ, (wn), (δn), (dn).

Keep g(z) = cosh(λ sinh(z)) in the strip S+.

In the disks Dn, substitute (z − zn)dn by ψn(z − zn) := ψdn(z − zn).

Compose with ρn sending 0 to wn near 1
2 . The critical values of

ρn ◦ φn(z − zn) are now centered around wn.

Bishop’s theorem yields a quasiregular extension of g in C with
dilatation independent of the parameters, and an entire map
f = g ◦ φ, with φ qc.
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General strategy

Now, as in Bishop, we modify g on the discs Dn (adjust parameters
dn,wn, δn), for n larger at each step. We iterate the process making
sure that

the process converges

the modifications do not change the dynamics we want to preserve.
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Exponents and dilatation parameters

We consider straight annuli around ∂Dn (the safety belt)

An = {1− µn < |z − zn| < 1 + µn}.

Ãn

2µ̃n

C ′n
Cn

(cosh ◦λ sinh ◦φ0)−n

D̃n,µ̃n

Claim 2

radius(C′n)

radius(Cn)
−→
n→∞

1 + µ̃n
1− µ̃n
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First step

We adjust µ2 << µ1, w1 = f −n2(z̃n) and δ1 appropriately so that:

Ãn2

2µ̃2
2µ̃1

w̃1

f n2−1
1

f1

D̃1,µ̃1

D̃2,µ̃2

f1(D̃1,µ̃1 ) ⊂ (f1)−n2 (D̃n2 )

Crit. val. outside (f1)−n2 (Ãn2 )
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The final check

Claim 3

There exists a wandering domain U containing D̃1,µ̃1 , and it satisfies

Un ⊂⊂ D.

In particular, its orbit does not contain singular values and therefore f n|U
is univalent for all n.

3π

2π
W1π
W00

−π
W−2−2π

V

τ̂
φ ◦ η1 ◦ η2 ◦ · · ·
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Thank you for your attention!
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Uniformly constant dilatation

Q

1−1

w = m√−1γ−1

ψm zm

loglog

Estimate modQ (right) and mod(ψm(Q)) (left) and see that the quotient
is uniformly bounded when m→∞ and δ → 0.

Go back
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