A wandering domain in class \mathcal{B} on which all iterates are univalent

Núria Fagella (with X. Jarque and K. Lazebnik)

Facultat de Matemàtiques i Informàtica Universitat de Barcelona and Barcelona Graduate School of Mathematics

Workshop on Complex Dynamics 2017 December 11-15, 2017

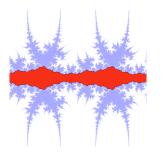
N. Fagella, X. Jarque and K. Lazebnik (UB)

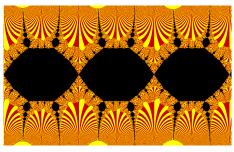
Univalent WD

If f : C → C (or to Ĉ) has an essential singularity at infinity we say that f is transcendental.

- If f : C → C (or to Ĉ) has an essential singularity at infinity we say that f is transcendental.
- Transcendental maps may have Fatou components that are not basins of attraction nor rotation domains:
 - U is a Baker domain of period 1 if $f^n \mid_U \to \infty$ loc. unif.

- If f : C → C (or to Ĉ) has an essential singularity at infinity we say that f is transcendental.
- Transcendental maps may have Fatou components that are not basins of attraction nor rotation domains:
 - U is a Baker domain of period 1 if $f^n \mid_U \to \infty$ loc. unif.
 - U is a wandering domain if $f^n(U) \cap f^m(U) = \emptyset$ for all $n \neq m$.





 $z + a + b\sin(z)$ [Figures: Christian Henriksen] $z + 2\pi + \sin(z)$

N. Fagella, X. Jarque and K. Lazebnik (UB)

Univalent WD

• The set S(f) of singularities of f^{-1} consists of critical values and asymtpotic values (and the closure of such).

- The set S(f) of singularities of f^{-1} consists of critical values and asymtpotic values (and the closure of such).
- A critical value is the image of a critical point, i.e. v = f(c) with f'(c) = 0.

- The set S(f) of singularities of f^{-1} consists of critical values and asymtpotic values (and the closure of such).
- A critical value is the image of a critical point, i.e. v = f(c) with f'(c) = 0.
- A point a ∈ Ĉ is an asymptotic value if there exists a curve γ(t) → ∞ such that f(γ(t)) → a. (Morally, a has infinitely many preimages collapsed at infinity).

Example:
$$z = 0$$
 for $f(z) = \lambda e^{z}$.

- The set S(f) of singularities of f^{-1} consists of critical values and asymtpotic values (and the closure of such).
- A critical value is the image of a critical point, i.e. v = f(c) with f'(c) = 0.
- A point a ∈ Ĉ is an asymptotic value if there exists a curve γ(t) → ∞ such that f(γ(t)) → a. (Morally, a has infinitely many preimages collapsed at infinity).

Example:
$$z = 0$$
 for $f(z) = \lambda e^{z}$.

• $f : \mathbb{C} \setminus f^{-1}(S(f)) \longrightarrow \mathbb{C} \setminus S(f)$ is a covering map of infinite degree.

- The set S(f) of singularities of f^{-1} consists of critical values and asymtpotic values (and the closure of such).
- A critical value is the image of a critical point, i.e. v = f(c) with f'(c) = 0.
- A point a ∈ Ĉ is an asymptotic value if there exists a curve γ(t) → ∞ such that f(γ(t)) → a. (Morally, a has infinitely many preimages collapsed at infinity).

Example:
$$z = 0$$
 for $f(z) = \lambda e^{z}$.

• $f : \mathbb{C} \setminus f^{-1}(S(f)) \longrightarrow \mathbb{C} \setminus S(f)$ is a covering map of infinite degree.

• Define the postsingular set of f as

$$P(f) = \overline{\bigcup_{s \in S} \bigcup_{n \ge 0} f^n(s)}.$$

N. Fagella, X. Jarque and K. Lazebnik (UB)

Univalent WD

Special classes

• The Eremenko-Lyubich class

 $\mathcal{B} = \{f \text{ ETF (or MTF) such that } S(f) \text{ is bounded}\}\$

Example: $z \mapsto \lambda \frac{z}{\sin(z)}$.

Maps in class \mathcal{B} have no Baker domains and NO ESCAPING WANDERING DOMAINS (Escaping set $\subset J(f)$).

Special classes

• The Eremenko-Lyubich class

 $\mathcal{B} = \{f \text{ ETF (or MTF) such that } S(f) \text{ is bounded}\}\$

Example: $z \mapsto \lambda \frac{z}{\sin(z)}$.

Maps in class \mathcal{B} have no Baker domains and NO ESCAPING WANDERING DOMAINS (Escaping set $\subset J(f)$).

If U is a wandering domain, and L(U) is the set of limit functions of f^n on U, then, all limit functions are constant and

$$U \text{ is } \begin{cases} \text{escaping} & \text{if } L(U) = \{\infty\} \\ \text{oscillating} & \text{if } \{\infty, a\} \subset L(U) \text{ for some } a \in \mathbb{C}. \\ \text{"bounded"} & \text{if } \infty \notin L(U). \end{cases}$$

N. Fagella, X. Jarque and K. Lazebnik (UB)

Existence of wandering domains

Question

Can maps in class \mathcal{B} have wandering domains at all?

Existence of wandering domains

Question

Can maps in class \mathcal{B} have wandering domains at all?

Answer: yes.

Theorem (Bishop'15)

There exists an entire map $f \in \mathcal{B}$ such that f has an (oscillating) wandering domain.

Existence of wandering domains

Question

Can maps in class \mathcal{B} have wandering domains at all?

Answer: yes.

Theorem (Bishop'15)

There exists an entire map $f \in \mathcal{B}$ such that f has an (oscillating) wandering domain.

Univalent WD in class ${\cal B}$

Bishop's wandering domain contains critical points inside of arbitrarily high order.

Univalent WD in class ${\cal B}$

Bishop's wandering domain contains critical points inside of arbitrarily high order.

Question

Is there an oscillating wandering domain with no singular values inside any of its iterates?

Univalent WD in class ${\cal B}$

Bishop's wandering domain contains critical points inside of arbitrarily high order.

Question

Is there an oscillating wandering domain with no singular values inside any of its iterates?

Answer: yes.

Theorem A (F-Lazebnik-Jarque'17)

There exists an ETF $f \in \mathcal{B}$ such that f has a wandering domain U on which $f^n|_U$ is univalent for all $n \ge 0$.

Constructing entire functions

Bishop's qc-folding construction

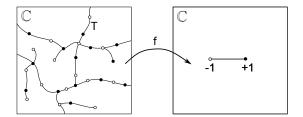
Let $f:\mathbb{C}\rightarrow\mathbb{C}$ be a transcendental entire function with

- ullet exactly two critical values, say -1 and +1
- no finite asymptotic values

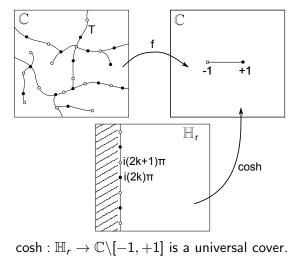
Question: What does *f* look like ?

N. Fagella, X. Jarque and K. Lazebnik (UB)

 $T = f^{-1}([-1, +1])$ is an infinite bipartite tree.



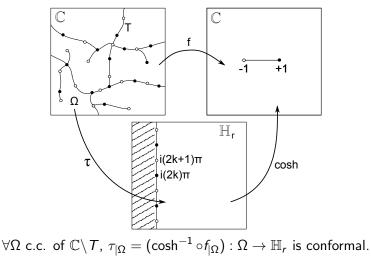
 $T = f^{-1}([-1,+1])$ is an infinite bipartite tree.



N. Fagella, X. Jarque and K. Lazebnik (UB)

Univalent WD

 $T = f^{-1}([-1, +1])$ is an infinite bipartite tree.



Conversely: How to construct f from (T, τ) ?

More precisely: Given

- ullet an infinite bipartite tree $\mathcal{T}\subset\mathbb{C}$ with "good enough" geometry
- a map τ such that $\tau_{|\Omega}: \Omega \to \mathbb{H}_r$ is conformal, $\forall \Omega$ c.c. of $\mathbb{C} \setminus \mathcal{T}$

Conversely: How to construct *f* from (T, τ) ?

More precisely: Given

- an infinite bipartite tree $T \subset \mathbb{C}$ with "good enough" geometry
- a map τ such that $\tau_{|\Omega} : \Omega \to \mathbb{H}_r$ is conformal, $\forall \Omega$ c.c. of $\mathbb{C} \setminus T$

Question: Does there exist an entire function $f : \mathbb{C} \to \mathbb{C}$ such that $f = \cosh \circ \tau$?

Main problem: In general, $\cosh \circ \tau$ is not continuous across T.

N. Fagella, X. Jarque and K. Lazebnik (UB)

Univalent WD

Strategy:

Step 1: Modify (T, τ) in a small neighborhood $T(r_0)$ of T.

More precisely, replace (T, τ) by (T', η) such that

- $T \subset T' \subset T(r_0)$
- $\eta = \tau$ off $T(r_0)$
- $\eta_{|\Omega'}: \Omega' \to \mathbb{H}_r$ is *K*-quasiconformal, $\forall \Omega'$ c.c. of $\mathbb{C} \setminus T'$
- $\cosh \circ \eta$ continuous across T' (quasiregular map)

Strategy:

Step 1: Modify (T, τ) in a small neighborhood $T(r_0)$ of T.

More precisely, replace (T, τ) by (T', η) such that

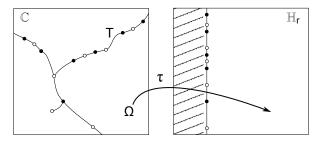
- $T \subset T' \subset T(r_0)$
- $\eta = \tau$ off $T(r_0)$
- $\eta_{|\Omega'}: \Omega' \to \mathbb{H}_r$ is *K*-quasiconformal, $\forall \Omega'$ c.c. of $\mathbb{C} \setminus T'$
- $\cosh \circ \eta$ continuous across T' (quasiregular map)

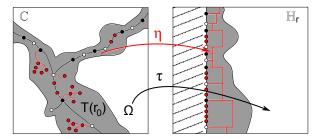
Step 2: Apply MRMT .

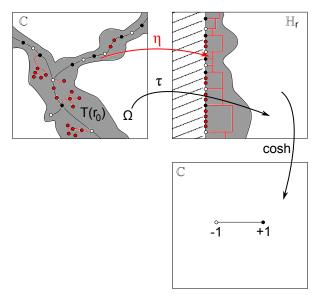
Obtain a qc map ϕ (the integrating map of $\mu_{\cosh \circ \eta}$) so that $f := \cosh \circ \eta \circ \phi^{-1}$ is entire. In particular

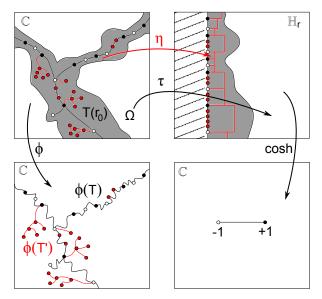
$$f \circ \phi = \cosh \circ \tau$$
 off $T(r_0)$

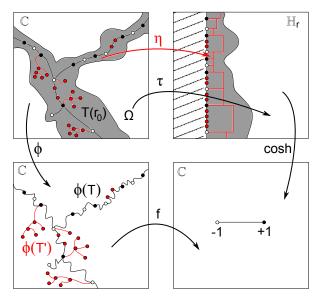
N. Fagella, X. Jarque and K. Lazebnik (UB)







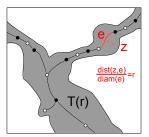




Bounded geometry

Definition: We say that T has bounded geometry if

- edges of T are C^2 with uniform bounds
- angles between adjacent edges are uniformly bounded away from 0
- $\forall e, f \text{ adjacent edges}, \frac{1}{M} \leq \frac{\operatorname{diam}(e)}{\operatorname{diam}(f)} \leq M$
- $\forall e, f \text{ non-adjacent edges}, \frac{\text{diam}(e)}{\text{dist}(e, f)} \leq M$



$$T(r) = \bigcup_{e ext{ edge of } T} \Big\{ z \in \mathbb{C} \ / \ \operatorname{dist}(z, e) < r \operatorname{diam}(e) \Big\}$$

N. Fagella, X. Jarque and K. Lazebnik (UB)

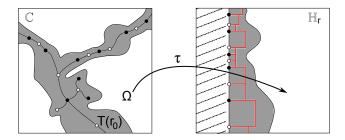
Univalent WD

RIMS Kyoto 12 / 32

Lemma

If T has bounded geometry, then $\exists r_0 > 0$ such that

 $\forall \Omega \ c.c. \ of \mathbb{C} \setminus T, \ \forall \ square \ Q \subset \mathbb{H}_r \ that \ has \ a \ \tau_{|\Omega} \text{-edge as one side,} \ Q \subset \tau_{|\Omega} \Big(T(r_0) \cap \Omega \Big)$



Every edge has two τ -sizes!!!

N. Fagella, X. Jarque and K. Lazebnik (UB)

Univalent WD

Bishop's Theorem

Theorem (Bishop'12)

If (T, τ) satisfies the following conditions

- T has bounded geometry
- 2 every edge has τ -size $\geq \pi$

then \exists an entire function f and a quasiconformal map ϕ such that

$$f \circ \phi = \cosh \circ \tau$$
 off $T(r_0)$

Moreover

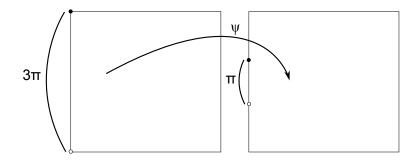
- f has exactly two critical values, -1 and +1
- f has no finite asymptotic values

•
$$\phi(T) \subset f^{-1}([-1,+1]) \quad (=\phi(T'))$$

• $\forall c \text{ critical point of } f, \deg_{\text{loc}}(c, f) = \deg(c, \phi(T'))$

The main technical difficulty is to find a quasiconformal map ψ from a square to itself such that

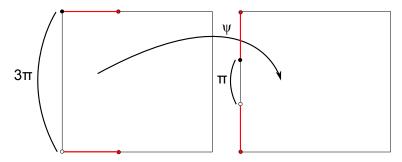
 $\left\{ \begin{array}{l} \psi \text{ maps the left side to an edge of length } \pi \\ \psi \text{ is the identity on the right side} \end{array} \right.$



The main technical difficulty is to find a quasiconformal map ψ from a square to itself such that

 $\begin{cases} \psi \text{ maps the left side to an edge of length } \pi \\ \psi \text{ is the identity on the right side} \end{cases}$

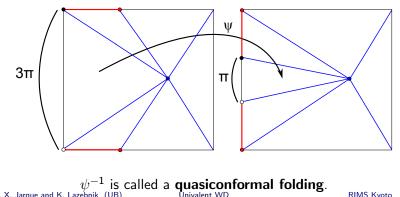
Solution: Add some extra edges and "unfold".



The main technical difficulty is to find a quasiconformal map ψ from a square to itself such that

 $\left\{ \begin{array}{l} \psi \text{ maps the left side to an edge of length } \pi \\ \psi \text{ is the identity on the right side} \end{array} \right.$

Solution: Add some extra edges and "unfold".

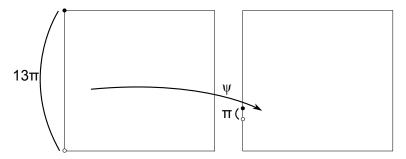


N. Fagella, X. Jarque and K. Lazebnik (UB)

The main technical difficulty is to find a quasiconformal map ψ from a square to itself such that

 $\begin{cases} \psi \text{ maps the left side to an edge of length } \pi \\ \psi \text{ is the identity on the right side} \end{cases}$

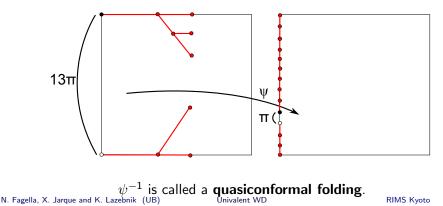
Solution: Add some extra edges and "unfold".



The main technical difficulty is to find a quasiconformal map ψ from a square to itself such that

 $\begin{cases} \psi \text{ maps the left side to an edge of length } \pi \\ \psi \text{ is the identity on the right side} \end{cases}$

Solution: Add some extra edges and "unfold".



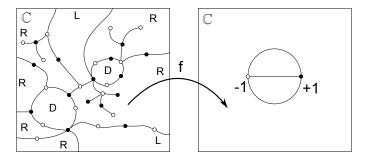
15 / 32

Bishop's qc-folding construction - adding singular values

Generalization: We may also construct f with

- ullet more critical values than only -1 and +1
- some finite asymptotic values
- arbitrary high degree critical points

Let T be an infinite bipartite graph.



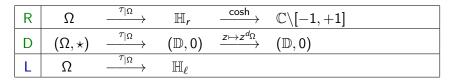
The c.c. of $\mathbb{C} \backslash \mathcal{T}$ are sorted into three different types:

R-components:	$ au_{ \Omega}:\Omega ightarrow\mathbb{H}_r$ conformally
D-components:	$ au_{ \Omega}:\Omega ightarrow\mathbb{D}$ conformally
L-components:	$ au_{ \Omega}:\Omega ightarrow\mathbb{H}_\ell$ conformally

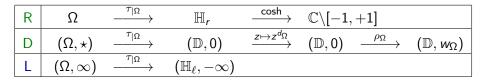
R	Ω	$\xrightarrow{\tau_{\mid\Omega}}$	\mathbb{H}_r	
D	Ω	$\xrightarrow{\tau_{\mid\Omega}}$	\mathbb{D}	
L	Ω	$\xrightarrow{\tau_{\mid\Omega}}$	\mathbb{H}_{ℓ}	

R	Ω	$\xrightarrow{\tau_{\mid\Omega}}$	\mathbb{H}_r	\xrightarrow{cosh}
D	Ω	$\xrightarrow{\tau_{\mid\Omega}}$	\mathbb{D}	
L	Ω	$\xrightarrow{\tau_{\mid\Omega}}$	\mathbb{H}_ℓ	

R	Ω	$\xrightarrow{\tau_{\mid\Omega}}$	\mathbb{H}_r	\xrightarrow{cosh}	$\mathbb{C} \setminus [-1, +1]$	
D	(Ω,\star)	$\xrightarrow{\tau_{\mid\Omega}}$	$(\mathbb{D},0)$			
L	Ω	$\xrightarrow{\tau_{\mid\Omega}}$	\mathbb{H}_{ℓ}			

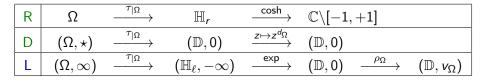


 $\begin{array}{ll} \mbox{R-components:} & \tau_{|\Omega}:\Omega\to\mathbb{H}_r \mbox{ conformally} \\ \mbox{D-components:} & \tau_{|\Omega}:\Omega\to\mathbb{D} \mbox{ conformally} \\ \mbox{L-components:} & \tau_{|\Omega}:\Omega\to\mathbb{H}_\ell \mbox{ conformally} \end{array}$



where $\rho_{\Omega} : \mathbb{D} \to \mathbb{D}$ is quasiconformal with $\rho_{\Omega}(z) = z$, $\forall z \in \partial \mathbb{D}$.

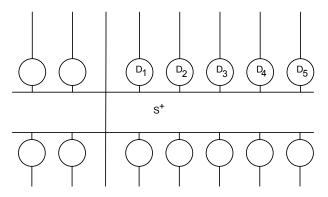
R	Ω	$\xrightarrow{\tau_{\mid\Omega}}$	\mathbb{H}_r	\xrightarrow{cosh}	$\mathbb{C} \setminus [-1, +1]$
D	(Ω,\star)	$\xrightarrow{\tau_{\mid\Omega}}$	$(\mathbb{D},0)$	$\xrightarrow{z\mapsto z^{d_{\Omega}}}$	$(\mathbb{D},0)$
L	(Ω,∞)	$\xrightarrow{\tau_{\mid\Omega}}$	$(\mathbb{H}_\ell,-\infty)$	\xrightarrow{exp}	(D,0)

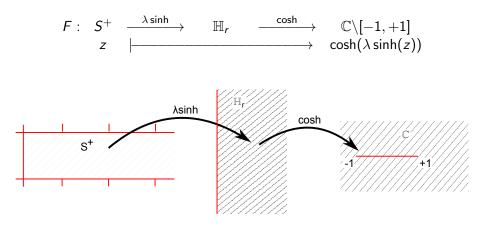


Constructiong the oscillating wandering domains in class ${\cal B}$

$$f = F \circ \phi^{-1} \quad \text{with} \quad \left\{ \begin{array}{l} F : \mathbb{C} \to \mathbb{C} \text{ quasiregular (transcendental)} \\ \phi : \mathbb{C} \to \mathbb{C} \text{ quasiconformal so that } \phi^* \mu_0 = F^*(\mu_0) \end{array} \right.$$

F is constructed using an infinite graph.

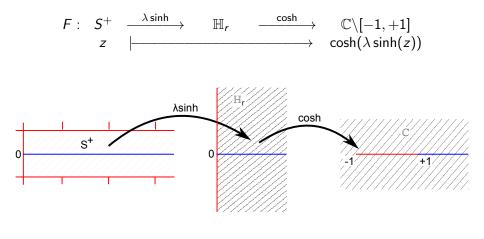




$$\lfloor \lambda > 0 \rfloor$$
 is fixed so that $f^n\left(\frac{1}{2}\right) \xrightarrow[n \to +\infty]{} +\infty$ very fast.

N. Fagella, X. Jarque and K. Lazebnik (UB)

Univalent WD

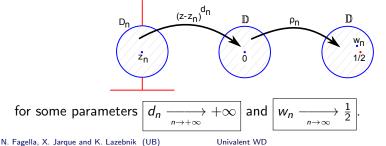


$$\lfloor \lambda > 0
floor$$
 is fixed so that $f^n\left(rac{1}{2}
ight) \xrightarrow[n \to +\infty]{} +\infty$ very fast.

N. Fagella, X. Jarque and K. Lazebnik (UB)

Univalent WD

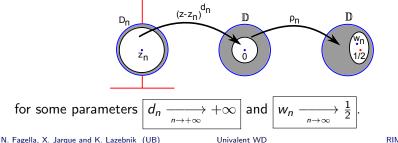
For every $n \ge 1$,



For every $n \ge 1$,

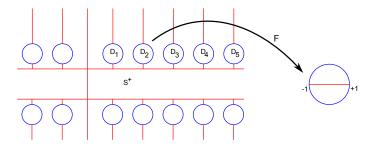
$$F: (D_n, z_n) \xrightarrow{z \mapsto (z-z_n)^{d_n}} (\mathbb{D}, 0) \xrightarrow{\rho_n} (\mathbb{D}, w_n)$$
$$z \xrightarrow{\rho_n} \rho_n ((z-z_n)^{d_n})$$

with $\begin{cases} \rho_n : \mathbb{D} \to \mathbb{D} \text{ quasiconformal} \\ \rho_n(0) = w_n \\ \operatorname{supp}(\mu_{\rho_n}) \subset \left\{ \frac{1}{2} \leqslant |z| \leqslant 1 \right\} \end{cases}$



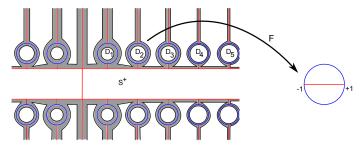
Using Bishop's construction F may be extended to a quasiregular map $F: \mathbb{C} \to \mathbb{C}$ such that:

- $\forall z \in \mathbb{C}, \ F(-z) = F(z) \text{ and } F(\overline{z}) = \overline{F(z)}$
- Crit(F) = {-1, +1} \cup { w_n , $n \ge 1$ } \cup { $\frac{1}{2}$ } $\subset \overline{\mathbb{D}}$ with $w_n \xrightarrow[n \to +\infty]{} \frac{1}{2}$
- $\operatorname{Asym}(F) = \emptyset$



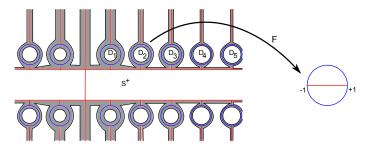
Using Bishop's construction F may be extended to a quasiregular map $F: \mathbb{C} \to \mathbb{C}$ such that:

- $\forall z \in \mathbb{C}, \ F(-z) = F(z) \text{ and } F(\overline{z}) = \overline{F(z)}$
- Crit(F) = {-1, +1} \cup { w_n , $n \ge 1$ } \cup { $\frac{1}{2}$ } $\subset \overline{\mathbb{D}}$ with $w_n \xrightarrow[n \to +\infty]{} \frac{1}{2}$
- $\operatorname{Asym}(F) = \emptyset$
- $supp(F^*(\mu_0))$ is small enough



Using Bishop's construction F may be extended to a quasiregular map $F : \mathbb{C} \to \mathbb{C}$ such that:

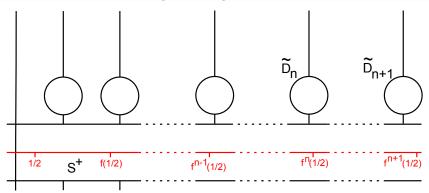
- $\forall z \in \mathbb{C}, \ F(-z) = F(z) \text{ and } F(\overline{z}) = \overline{F(z)}$
- Crit(F) = {-1, +1} \cup { w_n , $n \ge 1$ } \cup { $\frac{1}{2}$ } $\subset \overline{\mathbb{D}}$ with $w_n \xrightarrow[n \to +\infty]{} \frac{1}{2}$
- $\operatorname{Asym}(F) = \emptyset$
- $\mathrm{supp}\left(\mathsf{F}^*(\mu_0)\right)$ is small enough in order that $\phi|_{\mathcal{S}^+} \approx \mathrm{Id}_{\mathcal{S}^+}$

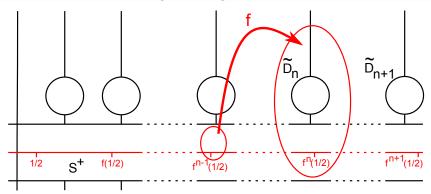


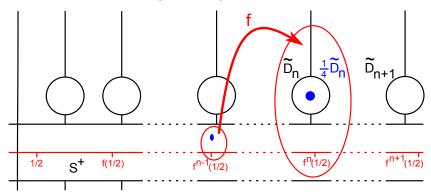
Let $f = F \circ \phi$ with $\phi : \mathbb{C} \to \mathbb{C}$ quasiconformal so that $\mu_{\phi^{-1}} = F^*(\mu_0)$.

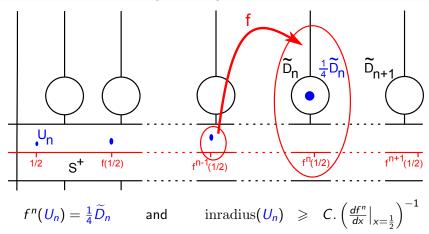
N. Fagella, X. Jarque and K. Lazebnik (UB)

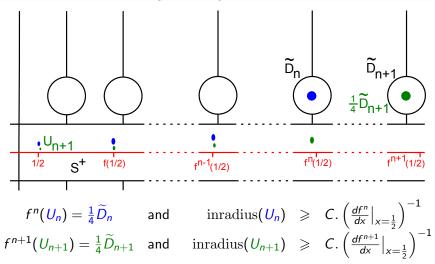
Univalent WD





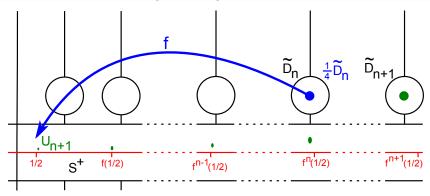






N. Fagella, X. Jarque and K. Lazebnik (UB)

Univalent WD



$$f^{n+1}(U_{n+1}) = \frac{1}{4}\widetilde{D}_{n+1} \text{ and } \operatorname{inradius}(U_{n+1}) \geqslant C.\left(\frac{df^{n+1}}{dx}\big|_{x=\frac{1}{2}}\right)^{-1}$$
$$\widetilde{w}_n \in f\left(\frac{1}{4}\widetilde{D}_n\right) \text{ and } \operatorname{diam}\left(f\left(\frac{1}{4}\widetilde{D}_n\right)\right) \leqslant C'.\left(\frac{1}{4}\right)^{\widetilde{d}_n}$$

N. Fagella, X. Jarque and K. Lazebnik (UB)

Univalent WD

• This is an iterative process, where Bishop's theorem is applied infinitely many times.

- This is an iterative process, where Bishop's theorem is applied infinitely many times.
- The parameters w_n , d_n are adjusted successively obtaining a new map f, everytime closer to the previous one, converging to a final map f.

- This is an iterative process, where Bishop's theorem is applied infinitely many times.
- The parameters w_n , d_n are adjusted successively obtaining a new map f, everytime closer to the previous one, converging to a final map f.
- The correction map ϕ at every step is closer and closer to the identity, since the support of μ decreases exponentially.

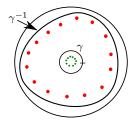
Modifying F to construct a univalent wandering domain The new map on D-components

Consider the map

$$\begin{array}{cccc} \mathbb{D} & \longrightarrow & \mathbb{D} \\ z & \longmapsto & z^m + \delta z \end{array}$$

• m-1 critical points which tend to $\partial \mathbb{D}$ when $m o \infty$

- m-1 critical values which tend to δ in modulus when $m \to \infty$.
- Let $\gamma = \{|z| = \frac{3}{2}\}$ and then $int(\gamma^{-1})$ contains all critical points.



The new map on *D*-components

Define a quasiregular map ψ on $\mathbb D$

$$\psi_m = \begin{cases} z^m + \delta z, & \text{if } z \in \text{int} \left(\gamma^{-1} \right) \\ z^m & \text{if } z \in \partial \mathbb{D}, \end{cases}$$

and linear interpolation in between $int(\gamma^{-1})$ and $\partial \mathbb{D}$.

Define a quasiregular map ψ on $\mathbb D$

$$\psi_{m} = \begin{cases} z^{m} + \delta z, & \text{if } z \in \text{int} \left(\gamma^{-1} \right) \\ z^{m} & \text{if } z \in \partial \mathbb{D}, \end{cases}$$

and linear interpolation in between int (γ^{-1}) and $\partial \mathbb{D}$.

Claim 1

The dilatation of ψ_m is

- uniformly bounded independently of m and $\delta \ll \frac{1}{2}$.
- supported on a region whose area tends to 0 as $m \to \infty$.

Idea of the proof

We resemble Bishop's construction with the following modifications:

• Parameters λ , (w_n) , (δ_n) , (d_n) .

- Parameters λ , (w_n) , (δ_n) , (d_n) .
- Keep $g(z) = \cosh(\lambda \sinh(z))$ in the strip S^+ .

- Parameters λ , (w_n) , (δ_n) , (d_n) .
- Keep $g(z) = \cosh(\lambda \sinh(z))$ in the strip S^+ .
- In the disks D_n , substitute $(z z_n)^{d_n}$ by $\psi_n(z z_n) := \psi_{d_n}(z z_n)$.

- Parameters λ , (w_n) , (δ_n) , (d_n) .
- Keep $g(z) = \cosh(\lambda \sinh(z))$ in the strip S^+ .
- In the disks D_n , substitute $(z z_n)^{d_n}$ by $\psi_n(z z_n) := \psi_{d_n}(z z_n)$.
- Compose with ρ_n sending 0 to w_n near $\frac{1}{2}$. The critical values of $\rho_n \circ \phi_n(z z_n)$ are now centered around w_n .

We resemble Bishop's construction with the following modifications:

- Parameters λ , (w_n) , (δ_n) , (d_n) .
- Keep $g(z) = \cosh(\lambda \sinh(z))$ in the strip S^+ .
- In the disks D_n , substitute $(z z_n)^{d_n}$ by $\psi_n(z z_n) := \psi_{d_n}(z z_n)$.
- Compose with ρ_n sending 0 to w_n near $\frac{1}{2}$. The critical values of $\rho_n \circ \phi_n(z z_n)$ are now centered around w_n .
- Bishop's theorem yields a quasiregular extension of g in C with dilatation independent of the parameters, and an entire map f = g ◦ φ, with φ qc.

N. Fagella, X. Jarque and K. Lazebnik (UB)

Univalent WD

• Now, as in Bishop, we modify g on the discs D_n (adjust parameters d_n, w_n, δ_n), for n larger at each step. We iterate the process making sure that

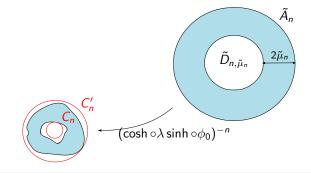
- Now, as in Bishop, we modify g on the discs D_n (adjust parameters d_n, w_n, δ_n), for n larger at each step. We iterate the process making sure that
 - the process converges

- Now, as in Bishop, we modify g on the discs D_n (adjust parameters d_n, w_n, δ_n), for n larger at each step. We iterate the process making sure that
 - the process converges
 - the modifications do not change the dynamics we want to preserve.

Exponents and dilatation parameters

We consider straight annuli around ∂D_n (the safety belt)

$$A_n = \{1 - \mu_n < |z - z_n| < 1 + \mu_n\}.$$



Claim 2

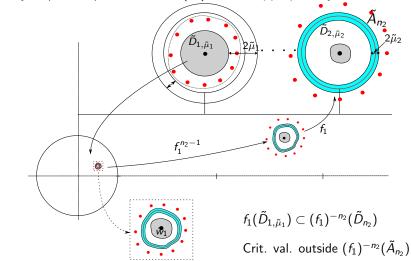
$$\frac{\operatorname{radius}(C'_n)}{\operatorname{radius}(C_n)} \xrightarrow[n \to \infty]{} \frac{1 + \tilde{\mu}_n}{1 - \tilde{\mu}_n}$$

N. Fagella, X. Jarque and K. Lazebnik (UB)

Univalent WD

First step

We adjust $\mu_2 \ll \mu_1$, $w_1 = f^{-n_2}(\tilde{z}_n)$ and δ_1 appropriately so that:



Univalent WD

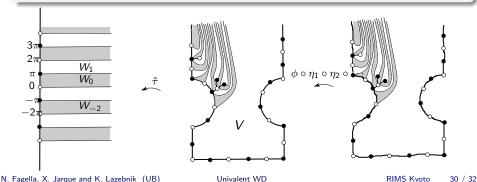
The final check

Claim 3

There exists a wandering domain U containing $\tilde{D}_{1,\tilde{\mu}_1}$, and it satisfies

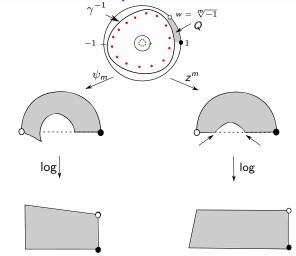
 $U_n \subset \subset \mathbb{D}.$

In particular, its orbit does not contain singular values and therefore $f^n|_U$ is univalent for all n.



Thank you for your attention!

Uniformly constant dilatation



Estimate $\operatorname{mod} Q$ (right) and $\operatorname{mod}(\psi_m(Q))$ (left) and see that the quotient is uniformly bounded when $m \to \infty$ and $\delta \to 0$.

N. Fagella, X. Jarque and K. Lazebnik (UB)

