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The Arnol’d standard family

The Arnol’d standard family of circle maps is given by, for α, β ∈ R,

Fα,β(θ) := θ + α + β sin θ (mod 2π), for θ ∈ [0, 2π),

and are transcendental perturbations of the rigid rotation of angle α

Fα,0(θ) = θ + α (mod 2π), for θ ∈ [0, 2π).

For |β| < 1, the map Fα,β is an orientation preserving homeomorphism of
the circle.

Let θ ∈ R, the rotation number of Fα,β is given by

ω(Fα,β) := lim
n→∞

F n
α,β(θ)− θ

n
∈ [0, 2π).

The rigid rotation of angle α has rotation number equal to α.

Arn61 V. I. Arnol’d, Small denominators I. Mapping the circle onto itself. Izv. Akad. Nauk SSSR
Ser. Mat. 25 1961 21–86.
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Arnol’d tongues

To study the dependence of the rotation number on the parameters (α, β),
for ρ ∈ [0, 2π) Arnol’d considered the sets of parameters

Tρ := {(α, β) ∈ R2 : ω(Fα,β) = ρ}

which are known as the Arnol’d tongues

and satisfy that:

I if ρ ∈ Q, then Tρ has non-empty interior,

I if ρ ∈ R \Q, then Tρ is a curve.

β

α

The boundaries of the tongues are analytic curves and the tongue T0 of
rotation number ρ = 0 has boundaries given by α = ±β.
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The complex Arnol’d standard family

The Arnol’d standard family can be extended to a family of transcendental
self-maps of the punctured plane C∗ = C \ {0}

fα,β(z) := ze iαeβ(z−1/z)/2,

which has as lifts the family of transcendental entire functions

Fα,β(z) := z + α + β sin z ,

that is
C

Fα,β //

e iz

��

C

e iz

��
C∗

fα,β // C∗

This is known as the complex standard family and the iteration of these
functions was studied for the first time by Fagella in her PhD thesis.

Fag99 N. Fagella, Dynamics of the complex standard family. J. Math. Anal. Appl. 229 (1999),
no. 1, 1–31.



The α-parameter space

We fix the parameter 0 < β < 1 and study the bifurcation with respect
to the parameter α ∈ C. Note that this is not a natural parameter
space.

We can restrict to the vertical band B0 := {z ∈ C : −π 6 Re z < π} as

Fα,β(z + 2π) = Fα,β(z) + 2π,

and thus the α-parameter space is 2π-periodic.

Observe that the real axis of the α-parameter space corresponds to the
line at height β in the real parameter space where the Arnol’d tongues lie.

β

α
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The critical orbits

For 0 < β < 1, the function Fα,β has two critical points

c0± = −π ± i arccosh(1/β)

in the vertical band B0 that are complex conjugates and their orbits satisfy

F n
α,β(c0+) = F n

α,β(c0−), for all n ∈ N0.

Iteration of c0+ Iteration of c0−
for α ∈ C and β = 0.1 for α ∈ C and β = 0.1



Finger-like structures

When β = 1, the α-parameter space of the complex standard family is
symmetric with respect to the real axis.

As we let β → 0, we can observe an increasing number of finger-like
structures appearing in the lower half plane, which seem to be contained
in the reflection of the set in the upper half plane.

β = 1 β = 0.1 β = 0.01



Limiting dynamics as β → 0

If we set β = 0, then Fα,0(z) = z + α, the dynamics of which is trivial.
However, Fagella showed that the dynamics of Fα,β do not become trivial
as β → 0. She proved that we can rescale Fα,β by setting

z̃ = z + i log(2/β)

and, in this variable, the function Fα,β becomes

F̃α,β(z̃) = z̃ + α− ie i z̃ + i
β2

4
e−i z̃ .

When we make β → 0, we obtain the one parameter family

F̃α,β(z̃)→ z̃ + α− ie i z̃ =: Gα(z̃)

which are lifts of the family of transcendental self-maps of C∗

gλ(z) = λzez ,

where λ = e iα.

Fag95 N. Fagella, Limiting dynamics for the complex standard family. Internat. J. Bifur. Chaos
Appl. Sci. Engrg. 5 (1995), 3, 673–699.



The region Aβ
We fix 0 < β < 1 and focus our study in the set of parameters

Aβ := {α ∈ C : the function Fα,β has an attracting fixed point ξ}

and for such α, one critical point of Fα,β lies in the immediate attracting
basin of ξ while the other one is free.



Definition of the fingers

For 0 < β < 1 and α ∈ Aβ , the function Fα,β has an attracting and
a repelling fixed point in each vertical band of width 2π. Let U0 be the
immediate basin of attraction of the fixed point such that ξ = −π/2 when
α = β, and define Un = U0 + 2nπ for n ∈ Z.

For n ∈ Z, we define the nth finger in Aβ as the subset

T n
β := {α ∈ Aβ : c0− ∈ Un}.

By definition, the fingers T n
β are open sets.

Observe that for α ∈ R, F n
α,β(c0+) = F n

α,β(c0−) for all n ∈ N0 and hence
the central finger T 0

β contains the interval (−β, β) ⊆ R which consists
of parameters in the Arnol’d tongue T0.

Question: Are the sets T n
β 6= ∅ for all n ∈ Z?
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Dynamics in the fingers



Left and right fingers

Due to the fact that

F−α,β(−z) = −z − α + β sin(−z) = −Fα,β(z)

the α-parameter space is symmetric with respect to the imaginary axis.



Existence of dynamic rays

We say that a curve γ : (0,+∞)→ C is a dynamic ray of Fα,β if
I for every n ∈ N, the iterate F n

α,β(γ) is an injective curve such that
|ImF n

α,β(γ(t))| → +∞ as t → +∞, and
I for every t > 0, the points in γ([t,+∞)) escape uniformly under

iteration by Fα,β , and γ is maximal with this property.
If, moreover, f (γ) ⊆ γ, we say that γ is invariant.

Theorem (Fagella-MP, 2017)

Let F be a transcendental entire function of the form

F (z) = nz + P(e iz) + Q(e−iz) with n ∈ Z and P,Q polynomials,

or a finite composition of such functions. If |ImF n(z)| → +∞ as n→∞,
then the point z lies in a dynamic ray.

The functions Fα,β in the complex standard family satisfy these hypothesis.

FM17 N. Fagella and D. Martí-Pete, Dynamic rays of bounded-type transcendental self-maps
of the punctured plane. Discr. Contin. Dyn. Syst. 37 (6) (2017), 3123 – 3160.



Invariant dynamical rays

When Reα = 0, the imaginary axis is forward invariant and consists of
two dynamic rays landing together:

Fα,β(iy) = i(y + Imα + β sinh y), for y ∈ R.



The dynamic rays γ±0
For every α ∈ C and 0 < β < 1, there exist two invariant dynamic rays
γ±0 such that Re γ±0 (t)→ 0 and Im γ±0 (t)→ ±∞ as t → +∞, and

Fα,β(γ±0 (t)) = γ±0 (Hβ(t)), for all t > T = T (α, β),

where
Hβ(t) := t + β sinh t.

There is T ′ > T such that if Reα > 0, then Re γ±0 (t) < 0 for all t > T ′.

If α belongs to a finger (or α = ±β), then these dynamic rays land in one
of the repelling (or parabolic) fixed points of Fα,β .



Parameter rays

For 0 < β < 1, we can consider the parameter rays given by

Γn := {α ∈ C : c− ∈ γ+n }, for n ∈ Z.

This defines a family of curves that land at the two parabolic parameters
α = ±β in ∂Aβ and separate the fingers.



The parabolic map f0

When α = β, the map

f0(z) := z + α + β sin z = z + β(1 + sin z)

has a parabolic fixed point at z0 = −π2 with f ′0(z0) = 1.

Parameter space Aβ Dynamical plane of f0
with β = 0.1 with β = 0.1



Leau-Fatou flower theorem

Since f ′0(z0) = e2πip/q

with p = 0, q = 1, by
the Leau-Fatou flower
theorem there exist

an attracting petal S−
such that f0(S−) ⊆ S−

and

a repelling petal S+
such that f0(S+) ⊇ S+.
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Fatou coordinates

There exist two univalent maps

Φattr : V− → C and Φrep : V+ → C

such that

Φattr(f0(z)) = Φattr(z) + 1 and Φrep(f0(z)) = Φrep(z) + 1

whenever z ∈ V± and f0(z) ∈ V±. We can quotient by the dynamics and
obtain maps

Φ̃attr : V− → C/Z and Φ̃rep : V+ → C/Z.

There exists a horn map from the repelling cylinder to the attracting
cylinder which is a branched covering

Ef0 : Dom(Ef0) \ f −10 ({v−, v+})→ C/Z \ {v−, v+}

and Dom(Ef0) has 3 components that contain the real axis and the two
ends of the cylinder.
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Écalle cylinders



Estimating the Fatou coordinates

Let ξ = z + π
2 so that ξ = 0 is the parabolic fixed point, in this variable

f̃0(ξ) = ξ + β(1− cos ξ) = ξ +
β

2
ξ2 + O(ξ4).

We write

f̃0(ξ) = ξ + v(ξ), where v(ξ) = β(1− cos ξ),

and define the flow coordinate by

Ψ(ξ) =

∫
dξ

v(ξ)
= − 1

β
cot
(
ξ

2

)
.

which provides a good approximation of the Fatou coordinates.



Flow coordinate



The parabolic checkerboard



The constant η



Estimating the constant η

In the flow coordinate, the critical values are

Ψ(v±) = ± i

β
+ e + o(1), as β → 0.

and use the following result on univalent functions to conclude that

η =
2
β

+ o(1), as β → 0.

Theorem (Shishikura)

Suppose that Φ and v are holomorphic functions in a region U satisfying:
Φ is univalent in U, |v(z)− 1| < 1/4 for z ∈ U and

Φ(z + v(z)) = Φ(z) + 1, if z , z + v(z) ∈ U.

There exists a universal constant C > 0 such that if U = D(z0,R) with
R > 2, then ∣∣∣∣∣Φ′(z0)−

1 + 1
2v
′(z0)

v(z0)

∣∣∣∣∣ 6 C

R2 .



Fatou coordinates after perturbation

Let us now consider the maps

fε(z) = f0(z) + ε = z + α + β sin z ,

that is, ε = α− β.

After perturbation, Fatou coordinates can still be defined: there exist maps

Φε
attr : V ε

− → C and Φε
rep : V ε

+ → C

such that

Φε
attr(f0(z)) = Φε

attr(z) + 1 and Φε
rep(f0(z)) = Φε

rep(z) + 1

whenever z ∈ V ε
± and f0(z) ∈ V ε

±. As before, there exists a horn map Efε

from the repelling cylinder to the attracting cylinder.

Now there exists a map χε from the attracting cylinder to the repelling
cylinder

χε(z) = z + π

√
2
β

1√
ε

+ o(1)

which allows us to identify both cylinders.



Écalle cylinders after perturbation



Elephants

Consider the new parameter γ given by

α = β + π2
2
β

1
γ2

so that χε(z) = z + γ + o(1) and γ is the new translation constant.
The γ-parameter space is 1-periodic asymptotically as Re γ → ±∞.



Elephants
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Limits along the fingers

Let γk := γ0+k , k ∈ N, be a sequence such that αk = β+2π2/(βγ2k ) ∈ T n
β

for all n ∈ N. Then the Julia set of Fαk ,β converges to a geometric limit that
contains the Julia set of the parabolic map f0 but has more decorations.

γ0 ∈ T 0
β with β = 0.1 γ0 ∈ T 2

β with β = 0.1



Limits outside the fingers

The following picture corresponds the limit we obtain by taking a sequence
γk := γ0 + k , k ∈ N, where αk = β + 2π2/(βγ2k ) belongs to a hyperbolic
component tangent to Aβ with β = 0.1.



Estimating the number of fingers

Let δ(t) be a parametrisation of ∂Aβ such that δ(0) = β. Consider

h := lim
t→0

Imπ

√
2
β

1√
δ(t)− β

= π, η := Im(Φattr(v+)−Φattr(v−)) =
2
β
.

The number of fingers is given by the number of k ∈ N such that

Im γ = η/k > h.

For example, if β = 0.1, then η = 20, so

η/1 = 20

η/2 = 10

η/3 ' 6.666

η/4 = 5

η/5 = 4

η/6 ' 3.333

η/7 ' 2.857 < π

therefore in this case we have 6 fingers to each side of the central finger.
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The number of fingers is given by the number of k ∈ N such that

Im γ = η/k > h.

For example, if β = 0.1, then η = 20, so

η/1 = 20

η/2 = 10

η/3 ' 6.666

η/4 = 5

η/5 = 4

η/6 ' 3.333

η/7 ' 2.857 < π

therefore in this case we have 6 fingers to each side of the central finger.
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A family of Blaschke products

For α ∈ C and β ∈ R, consider the family of rational functions

Bα,β(z) := eαiz2
1 + βz

z + β

such that Bα,β(0) = 0, Bα,β(−β) = ∞ and, for α ∈ R, Bα,β maps the
unit circle to itself.



Fingers for Blaschke products

The α-parameter space of the family Bα,β for β = 0.01.



Fingers for cubic polynomials and Hénon maps

Finger-like structures were observed for the first time by Hubbard in the
study of Hénon maps in C2. Motivated by this, Radu and Tanase studied
the family of cubic maps and also observed the existence of similar finger-
like structures.

Picture of the fingers for Henon maps by Radu and Tanase.
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