Dynamics of semigroups of transcendental entire functions

Shunsuke Morosawa Workshop on Complex Dynamics 2017 RIMS, Kyoto University December 11 2017 A family of transcendental entire functions $\{f_1, f_2, \ldots\}$.

$$G = \langle f_1, f_2, \dots \rangle$$

The Fatou set of G is the maximal open subset of \mathbb{C} where the family of G is normal. Denote it by F(G). The Julia set of G is $J(G) = \mathbb{C} \setminus F(G)$.

• For each $g \in G$,

 $F(G) \subset F(\langle g \rangle)$ $J(\langle g \rangle) \subset J(G)$

- The Fatou set is forward invariant
- The Julia set is backward invariant.
- Julia sets may have interior points.

Theorem.(STANKEWITZ) The Julia set of a semigroup of entire functions which contains at least one transcendental entire function is the closure of the set of repelling fixed points.

Corollary.

 $J(G) = \bigcup_{f \in G} J(\langle f \rangle)$

Let U be a component of F(G). For $g \in G$, U_g is a component of F(G) satisfying $g(U) \subset U_g$.

 $G_U = \{g \in G \mid U_g = U\}$

U is a stable domain, if $G_U \neq \emptyset$.

• (super-)attracting, if U is a subdomain of (super-) attracting basin of some element of G_U .

• parabolic, if U is a subdomain of parabolic basin of some element of G_U .

• Siegel, if U is a subdomain of Siegel disk of some element of G_U .

• Baker, if $\exists \{g_n\} \subset G_U$ such that $g_n \to \infty$ l.u. on U.

 $U \subset F(G)$ is wandering, if $\#\{U_g \mid g \in G\} = \infty$.

U is strictly wandering, if $U_g = U_h \Rightarrow g = h$.

Theorem.(HINKKANEN AND MARTIN) There exists an infinitely generated polynomial semigroup which has wandering domains.

Conjecture. (HINKKANEN AND MARTIN) Let G be a finitely generated polynomial semigroup. Then Ghas no wandering domainss. $sing(f^{-1}) = \{ critical values of f \} \cup \{ asymptotic values of f \} \}$

 $\mathcal{S} = \{ f \mid \# \operatorname{sing}(f^{-1}) \text{ is finite.} \}$

 $\mathcal{B} = \{ f \mid \operatorname{sing}(f^{-1}) \text{ is bounded.} \}$

Theorem.(EREMENKO AND LYUBICH) If $f \in \mathcal{B}$, then for $\forall z \in F(\langle f \rangle)$ $f^n(z) \not\rightarrow \infty$.

Theorem. For $f \in \mathcal{B}$, every component of $F(\langle f \rangle)$ is simply connected.

Proposition. If G is generated by functions belonging to \mathcal{B} , then every component of F(G) is simply connected.

Theorem. $f \in S$ has neither Baker domains nor wandering domains.

Theorem.(BISHOP) There is a function belonging to \mathcal{B} whose Fatou set contains wandering domains.

Theorem.(FAGELLA, GODILLON AND JARQUE) There are $f,g \in \mathcal{B}$ such that neither $F(\langle f \rangle)$ nor $F(\langle g \rangle)$ has wandering domains and $F(\langle f \circ g \rangle)$ has wandering domains.

Question. Does $G = \langle f, g \rangle$ have wandering domains?

Question. Let G be a finitely generated semigroup of functions belonging to \mathcal{B} . Does G have wandering domains?

Question. Let G be a finitely generated semigroup of functions belonging to \mathcal{B} . Does G have Baker domains?

Question. Let G be a finitely generated semigroup of functions belonging to S. Does G have wandering domains?

Question. Let G be a finitely generated semigroup of functions belonging to S. Does G have Baker domains?

Example. $f(z) = e^z - 1$, g(z) = 2z, $G = \langle f, g \rangle$ $J(\langle g \rangle) = \{0\}$ $\{z \mid \text{Re } z < 0\} \subset F(\langle g \rangle)$ $g(\{z \mid \text{Re } z < 0\}) \subset \{z \mid \text{Re } z < 0\}$ 0 is a parabolic fixed point of f. $\{z \mid \text{Re } z < 0\} \subset F(\langle f \rangle)$ $f(\{z \mid \text{Re } z < 0\}) \subset \{z \mid \text{Re } z < 0\}$ $\{z \mid \text{Re } z < 0\} \subset F(G)$

For $n \in \mathbb{Z}$,

$$\{x + 2\pi ni \mid x \ge 0\} \subset J(\langle f \rangle)$$

$$\{x + 2\pi \frac{n}{2^m}i \mid x \ge 0\} = g^{-m}(\{x + 2\pi ni \mid x \ge 0\}) \subset J(G)$$

$$\{z \mid \text{Re } z \ge 0\} \subset J(G)$$

$$\{z \mid \text{Re } z < 0\} = F(G), \quad \{z \mid \text{Re } z \ge 0\} = J(G)$$

$$\{z \mid \text{Re } z < 0\} \text{ is a Baker domain.}$$

$$\{g^n\}$$

$$\{g^n \circ f\}$$

Example.

 $f(z) = e^{z} + k$ $J(\langle f \rangle) = J(\langle f \rangle) + 2\pi i$ $g(z) = e^{z} + k + 2\pi n i$ $J(\langle f \rangle) = J(\langle g \rangle)$

 $f_0(z) = e^z + c + \pi i, \quad c > 1$ $f_0(z)$ has an attracting 2-cycle. $\alpha < 0 < \beta$ $f_0(\alpha + \pi i) = \beta + \pi i$ $f_0(\beta + \pi i) = \alpha + \pi i$ $f_n(z) = e^z + c + (2n+1)\pi i$ $= f_0(z) + 2n\pi i$ $\{\alpha + (2n+1)\pi i, \beta + (2n+1)\pi i\}$ $J(\langle f_0 \rangle) = J(\langle f_n \rangle)$ $G = \langle \cdots, f_{-1}, f_0, f_1, \cdots \rangle$

 $J(G) = J(\langle f_0 \rangle)$ $F(G) = F(\langle f_0 \rangle)$

A is the component of F(G) intersecting the left halfplane.

 B_m is the component of F(G) containing $\beta + (2m + 1)\pi i$.

$$f_n(A) = B_n \qquad f_n(B_m) = A$$
$$\{f_{n+1} \circ f_n(z) = f_0^2(z) + 2(n+1)\pi i\}$$

 B_m is a wandering domain.

A is a Baker domain.

G has wandering domains.G has a Baker domain.

A semigroup G is nearly abelian if there is a compact family of Möbius transformations $\Phi = \{\phi\}$ satisfying:

(1) $\phi(F(G)) = F(G)$ for $\forall \phi \in \Phi$ and (2) for $\forall f, g \in G, \exists \phi \in \Phi$ such that $f \circ g = \phi \circ g \circ f$.

Theorem. Let G be a nearly abelian transcendental entire semigroup. Then for each $g \in G$, $J(G) = J(\langle g \rangle)$.

> $f_1(z) = e^z + k = e^z + k + 2\pi n_1 \pi i$ $f_j(z) = e^z + k + 2\pi n_j \pi i \quad (2 \le j \le m)$ $f_{s_\ell} \circ f_{s_{\ell-1}} \circ \cdots \circ f_{s_1}(z) = f_1^\ell(z) + 2\pi n_{s_\ell} i$ $\langle f_1, f_2, \cdots f_n \rangle \text{ is a nearly abelian semigroup.}$

 $\langle g_1, g_2 \rangle$ is a nearly abelian semigroup.

Question. What can we say about a nearly abelian transcendental entire semigroup?

Question. Does a nearly abelian transcendental entire semigroup have wandering domains?