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§1. Regular polynomial skew products on C2

f(z, w) = (p(z), q(z, w))

=

zd + d−1∑
j=0

ajz
j , wd +

∑
i+j≤d, j<d

bi,jz
iwj

 (∗)

f : {z} ×C→ {p(z)} ×C.

f preserves the family of fibers {z} ×C.

qz(w) := q(z, w),

fk(z, w) = (pk(z), Qkz(w)) := (pk(z), qpk−1(z) ◦ · · · ◦ qz(w)).



Kp := {z ∈ C; {pk(z)}k≥0 is bounded} (filled Julia set)

Jp := ∂Kp (Julia set)

For z ∈ Kp,

Kz := {w ∈ C; {Qkz(w)}k≥0 is bounded},
Jz := ∂Kz (fiber Julia set).



§2. Continuity of the map z 7→ Jz on Kp for Axiom A map

Ap := {attracting periodic points of p in C},
ΛAp := {saddle periodic points of f in Ap ×C},
ΛJp := {saddle periodic points of f in Jp ×C},

W s(ΛAp
) := {y ∈ C; fn(y)→ ΛAp

},
Wu(ΛJp) := {y ∈ C; ∃ prehistory {y−k} → ΛJp}.

Theorem 1. Suppose f is Axiom A. Then

z 7→ Jz is continuous on Kp ⇐⇒W s(ΛAp)∩Wu(ΛJp) = ∅.



Example with W s(ΛAp
) ∩Wu(ΛJp) ̸= ∅

f(z, w) = (p(z), qz(w)) = (z2 + az, w2 + 2(b− z)w),

|a| < 1, |b| > 1

2
, 0 < |a− 1 + b| < 1

2
.

Ap = {0}, α+ = (0, 0) ∈ ΛAp
.

α− = (β, 0) := (1− a, 0) ∈ ΛJp

W s(α+) ∩Wu(α̂−) ⊃ intKp × {0}.

The map f(z, w) = (z2, w2 + 2(1− z)w) is not Axiom A

(cf. M. Jonsson)



Wu(α̂−),W
s(α+) and the K-set in the real slice

O

y

x

y

K

α−
α+

0 ∈ Jx, 0 < x < β

0 ∈ intKβ



Jz for f(z, w) = (z2 + 0.1z, w2 + 2(1.2− z)w).

From left: z = 0.89, 0.899, 0.8999, β = 0.9



Jz for f(z, w) = (z2 + 0.1z, w2 + 2(1.2− z)w).

From left: z = 0.89, 0.899, 0.8999, β = 0.9

This phenomenon looks like parabolic implosion:



§3. An implosion arising from saddle connection

(joint with H. Inou)

0

w

zβ

Qknzn

W s(α−)
g

Wu(α̂+)

W s(α+) ∩Wu(α̂−)



The base variable z plays the role of parameter.

The fiberwise dynamics drastically changes as z moves

from β.

This causes the discontinuity of fiber Julia sets at z = β.

Under some assumptions, we will show:

For a sequence zn ∈W s(α+) ∩Wu(α̂−) tending to β,

there exist kn →∞ such that the high iterates Qknzn
converge to a “Lavaurs map” g :W s(α−)→Wu(α̂+).

We use linearizing coordinates at saddle fixed points

instead of Fatou coordinates in parabolic implosion.



The family F = Fd of maps f(z, w) = (p(z), qz(w)) of the

form (∗), satisfying

(1) p has an attracting fixed point 0, whose immediate

basin U0 contains a repelling fixed point β on ∂U0.

(2) qz(0) ≡ 0.

(3) α+ = (0, 0) and α− = (β, 0) are saddle fixed points:

Df(α±) =

(
λ± 0

0 µ±

)
,

0 < |λ+| < 1 < |µ+|, 0 < |µ−| < 1 < |λ−|.



Linearization at saddle fixed points

The linearizing coordinates Ψ± at α± :

Ψ± ◦ f = Df(α±) ·Ψ±, DΨ±(α±) = Id.

Lemma 1. There exists a subset F ′ ⊂ F of full measure

such that Ψ± uniquely exist for f ∈ F ′.

By uniqueness, it follows that Ψ± are skew products :

Ψ±(z, w) = (ϕ±(z), ψ±(z, w)) = (ϕ±(z), ψ±,z(w)).

ϕ± ◦ p(z) = λ±ϕ±(z),

ψ±,p(z) ◦ qz = µ±ψ±,z.



Take a sequence zn in U0, zn → β. Let

Aβ := ϕ−1
− ({r ≤ |z| < |λ−|r}),A0 := ϕ−1

+ ({|λ+|r < |z| ≤ r})

be fixed fundamental domains of p around β, 0. Then

∃k′n (→∞) such that pk
′
n(zn) ∈ Aβ .

We assume

(4) {pk′n(zn)} is compact in U0.

(5) There exist k′′n > k′n such that pk
′′
n (zn) ∈ A0.

(6) q′z(0) = 0 implies q′′z (0) ̸= 0 for z ∈ U0.

(7) q′pi(z)(0) = 0 implies q′pj(z)(0) ̸= 0 for j ̸= i, z ∈ U0.



Decomposition of Qknzn

C,0
µ
kn−k′′

n
+ w
←−−−−−− C,0

χn←−−−− C,0
µ
k′
n

− w
←−−−− C,0xψ+,pkn (zn)

xψ+,p
k′′
n (zn)

xψ−,p
k′
n (zn)

xψ−,zn

C,0 ←−−−−−−
Q

kn−k′′
n

p
k′′
n (zn)

C,0 ←−−−−−−
Q

k′′
n−k′

n

p
k′
n (zn)

C,0 ←−−−−
Q

k′
n

zn

C,0

By the assumption (4) on {pk′n(zn)}, the family of maps

χn := ψ
+,pk

′′
n (zn)

◦Qk
′′
n−k′n
pk

′
n (zn)

◦ ψ−1

−,pk′
n (zn)

is normal.



Qknzn in the linearizing coordinates

ψ+,pkn (zn) ◦Qknzn ◦ ψ
−1
−,zn(w)

= µ
kn−k′′n
+ χn(µ

k′n
− w)

= µ
kn−k′′n
+

(
χ′
n(0)µ

k′n
− w +

1

2
χ′′
n(0)µ

2k′n
− w2 +O(µ

3k′n
− )

)

≍ (Qknzn )
′(0)

w +
χ′′
n(0)

2

(Q
k′n
zn )

′(0)

(Q
k′′n−k′n
pk

′
n (zn)

)′(0)
w2 +O(µ

k′n
− )

 .

By the assumptions (6) and (7), the third term is negligible.

(6) and (7) hold if d = 2.



Convegence to Lavaurs maps

Theorem 2. 1) Suppose that

(Q
k′n
zn )

′(0)

(Q
k′′n−k′n
pk

′
n (zn)

)′(0)
→ 0.

If a sequence {kn} satisfies (Qknzn )
′(0)→ σ ̸= 0, then

Qknzn → gσ := ψ−1
+,0 ◦mσ ◦ ψ−,β ,

locally uniformly in W s(α−), where mσ(w) := σw.



2) Next suppose that
∣∣∣∣∣∣ (Q

k′n
zn )

′(0)

(Q
k′′n−k′n
pk

′
n (zn)

)′(0)

∣∣∣∣∣∣
 is bounded from below.

If a sequence {kn(≥ k′′n)} satisfies

(Qknzn )
′(0)→ σ, (Qknzn )

′′(0)→ τ̃ ̸= 0, then

Qknzn → gη := ψ−1
+,0 ◦ η ◦ψ−,β , locally uniformly in W s(α−).

Here

η(w) = σw + τw2, τ = τ̃ + (ψ′′
+,0(0)σ

2 − ψ′
−,β(0)σ)/2.



Lavaurs maps and fiber Julia-Lavaurs sets

We call g = gσ or gη :W s(α−)→Wu(α̂+) a Lavaurs

map. Since

W s(α−) = {β} × intKβ and Wu(α̃+) = {0} ×C

are disjoint, we cannot define the composition g2 of g.

K(g) := Kβ \ g−1(C \K0),

J(g) := g−1(J0) (fiber Julia-Lavaurs set).

It holds that
Jβ ( J(g) = ∂K(g).



Fiber Julia sets accumulate fiber Julia-Lavaurs sets

Theorem 3. Suppose that the assumptions in Theorem 2

hold, hence Qknzn → g in W s(α−). We also assume that q0
is hyperbolic. Then,

∂(Kzn ,K(g))→ 0, ∂(J(g), Jzn)→ 0.

If, in addition, intKβ =W s(α−), then, with respect to the

Hausdorff distance,

Kzn → K(g), Jzn → J(g).

This explains the discontinuity of fiber Julia sets at z = β.



Topology of fiber Julia-Lavaurs sets

f(z, w) = (z2 + 0.1z, w2 + 2(1.25− z)w), g = gσ, σ ∈ R.

g−1(J0) consists of countably many arcs.

J(g) = Jβ ∪ g−1(J0) is connected and locally connected.



§4. Super-saddle : Spec(Df(α)) = {0, µ}, |µ| > 1

f : holomorphic germ (C2
, 0)→ (C2

, 0).

C(f) : critical set of f and generalaized critical set :

C∞(f) :=
∪
n≥0

f−n(C(f)) =
∪
n≥0

C(fn).

f is rigid if

(a) C∞(f) has normal crossings, i.e., by a local coordinate,

C∞(f) = ∅, or {z = 0}, or {zw = 0}.

(b) f(C∞(f)) ⊂ C∞(f).



Formal normal forms of rigid germs

Favre classified attracting rigid germs and gave formal

normal forms.

He showed formal classification coincides with analytic one

in most cases.

Ruggiero extends his results to semi-superattracting rigid

germs : (Spec(Df(α)) = {0, µ}, µ ̸= 0).

He showed that, if |λ| > 1,

f(z, w) = (λz, zw(1 + w)) ∼formal f0(z, w) = (λz, zw),

but the formal conjugacy diverge.



In case α+ = (0, 0) is a super-saddle: λ+ = p′(0) = 0

We may assume p(z) = zm with m ≥ 2.

f is rigid at α+, since C∞(f) = {z = 0}.

By Ruggiero :

f is formally conjugate to the germ f0(z, w) = (zm, µ+w).

It turns out that, in most cases, the formal conjugacies

diverge.



Divergence of formal conjugacies

f(z, w) = (zm, q(z, w)), m ≥ 2,

where q is a polynomial of w whose coefficients are

holomorphic at z = 0.

q(z, w) =
∑
i≥0

qi(w)z
i, q0(w) = µw +O(w2), |µ| > 1.

ϕ0 : the inverse of the linearizing coordinate of q0 at 0 :

q0 ◦ ϕ0(w) = ϕ0(µw), ϕ′0(0) = 1.

It extends to C by the functional relation :

ϕ0(w) = qk0 ◦ ϕ0(
w

µk
).



Theorem 4. Suppose that there exists w0 ∈ C such that

(i) q′0(ϕ0(w0)) = 0,

(ii) q1(ϕ0(w0)) ̸= 0.

Then formal conjugacy Φ(z, w) = (z, ϕ(z, w)) of f to f0 is

not holomorphic at the origin.

The assumption (i) holds if and only if

q0 ̸∼affine r(w) := (w + 1)d − 1, for any d ≥ 2.



In fact, for any neighborhood U of 0 ∈ Jq0 ,

ϕ0(C) =
∪
n≥0

ϕ0(µ
n · U) =

∪
n≥0

qn0 (ϕ0(U)) = C \ E(q0),

where E(q0) is the set of exceptional points of q0.

q0 ̸∼affine r ⇐⇒ E(q0) = {∞}
⇐⇒ ϕ0(C) = C
⇐⇒ ∃w0 ∈ C, s.t. (i).

If q0(w) = (w + 1)d − 1, then ϕ0(w) = ew − 1 and

q′0(ϕ0(w)) = de(d−1)w ̸= 0.



Proof of Theorem 4

Formal conjugacy: f ◦ Φ = Φ ◦ f0, f0(z, w) = (zm, µw).

We may assume Φ(z, w) = (z, ϕ(z, w)). Then ϕ satisfies

q(z, ϕ(z, w)) = ϕ(zm, µw).

Put ϕ(z, w) =
∑
i≥0 ϕi(w)z

i, then

q(z, ϕ(z, w)) =
∑
i≥0 qi(ϕ0 +

∑
j≥1 ϕjz

j)zi

= q0(ϕ0) + q′0(ϕ0)
∑
j≥1 ϕjz

j + · · ·

+
(
q1(ϕ0) + q′1(ϕ0)

∑
j≥1 ϕjz

j + · · ·
)
z + · · · ,

and ϕ(zm, λw) =
∑
j≥0 ϕj(λw)z

mj .



q0(ϕ0(w)) = ϕ0(µw),

q′0(ϕ0)ϕ1(w) + q1(ϕ0) = 0,

· · ·
q′0(ϕ0)ϕj(w) + Fj(ϕ0, · · · , ϕj−1) = ϕj/m(µw),

· · ·
q′0(ϕ0)ϕm(w) + Fm(ϕ0, · · · , ϕm−1) = ϕ1(µw).

· · ·



ϕ1(w) = −
q1(ϕ0(w))

q′0(ϕ0(w))
,

. . .

ϕm(w) =
ϕ1(µw)

q′0(ϕ0(w))
− Fm(ϕ0, · · · , ϕm−1)

q′0(ϕ0(w))

= − q1(ϕ0(µw))

q′0(ϕ0(w))q
′
0(ϕ0(µw))

− Fm(ϕ0, · · · , ϕm−1)

q′0(ϕ0(w))
,

· · · .

ϕmk(w) = − q1(ϕ0(µ
kw))∏k

j=0 q
′
0(ϕ0(µ

jw))
−Fmk(ϕ0, ϕ1, · · · , ϕmk−1)∏k−1

j=0 q
′
0(ϕ0(µ

jw))
.



By the assumptions, it follows that,

for any k, ϕmk has a pole at w =
w0

µk
→ 0.

Thus ϕ cannot be holomorphic at the origin.



Convergence of formal conjugacies

f(z, w) = (zm, (w + 1)d − 1 +
d∑
j=0

∑
i≥1

qi,jz
iwj).

Theorem 5. Assume d ≤ m. Then, there exists a

holomorphic conjugacy Φ of f to f0(z, w) = (zm, dw) at

the origin.

As a corollary, Theorems 2 and 3 hold for

f(z, w) = (z2, w2 + 2(1− bz)w),

with appropriate b.



In case α− = (β, 0) is a super-saddle: µ− = q′β(0) = 0

Put qβ(w) = h(w)wm, h(0) ̸= 0, m ≥ 2. Then

qz(w) = h(w)wm +
∑

i,j≥1,i+j≤d

bi,j(z − β)iwj .

Lemma 2. Suppose b1,1 ̸= 0. Then

∃ a critical point c(z) of qz s.t. c(z) ≍ (z − β)1/(m−1),

∃ck(z) ∈ (Qkz)
−1(c(pk(z)) s.t. ck(z) ≍ (z − β)1/m

k(m−1),

for any k ≥ 1 and for z close to β.



Proof. The root c(z) of the equation :

q′z(w) = h̃(w)wm−1 + b1,1(z − β)(1 +O(z − β,w)) = 0,

with the property c(β) = 0 satisfies c(z) ≍ (z − β)1/(m−1).

The estimate for ck(z) follows from :

Qkz(w) = Qkβ(w) +H(z, w)(z − β)w

= hk(w)w
mk

+H(z, w)(z − β)w,

c(pk(z)) ≍ (pk(z)− β)1/(m−1) ≍ (z − β)1/(m−1).

�

Corollary 1. If b1,1 ̸= 0, f is not rigid at (β, 0).



Take a sequence zn ∈ U0 tending to β.

Theorem 6. Suppose b1,1 ̸= 0. For any sequence kn →∞,

if Qknzn → g, then g ≡ 0.

Proof. If Qknzn → g, then (Qknzn )
′ → g′.

By Lemma 2, arbitrarily many zeros {ck(zn)}k<kn of

(Qknzn )
′ merge into 0.

Thus g′ ≡ 0, hence g(w) ≡ g(0) = 0. �



It also happens that

Jz → J(g) = g−1(J0) =W s(α−) as z → β.



It also happens that

Jz → J(g) = g−1(J0) =W s(α−) as z → β.

Jz for f(z, w) = (z2 + 0.1z, w2 + 2(0.9− z)w).

From left: z = 0.88, 0.899, 0.899999999, 0.9 (= β)

This is the case : Jz → Kβ =W s(α−).



f(z, w) = (z3, w3 − 3i√
2
zw2 + 3(1− z)(w + 1)w).

q0(w) = (w + 1)3 − 1,

q1(w) = w3 − 3i√
2
w2 has two super-attracting fixed points

0 and
√
2i.



f(z, w) = (z3, w3 − 3i√
2
zw2 + 3(1− z)(w + 1)w).

q0(w) = (w + 1)3 − 1,

q1(w) = w3 − 3i√
2
w2 has two super-attracting fixed points

0 and
√
2i.

From left: z = 0.98, 0.999, 0.99999, 0.9999999999


