Escaping singular orbits in Class \mathcal{B}

Leticia Pardo Simón

University of Liverpool

Supervisor: Prof. L. Rempe-Gillen

Workshop on Complex Dynamics, RIMS, Kyoto. 12^{th} December, 2017

Notable sets

Definition

• Let $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ be a polynomial or $f: \mathbb{C} \to \mathbb{C}$ a transcendental entire map.

Notable sets

Definition

- Let $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ be a polynomial or $f: \mathbb{C} \to \mathbb{C}$ a transcendental entire map.
- F(f): Fatou set J(f): Julia set

Notable sets

Definition

- Let $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ be a polynomial or $f: \mathbb{C} \to \mathbb{C}$ a transcendental entire map.
- F(f): Fatou set J(f): Julia set
- The **escaping set** consists of the points that escape to infinity under iteration:

$$I(f) = \{ z \in \mathbb{C} : f^n(z) \to \infty \}$$

Frequently structured in curves called dynamic rays.

• In the *polynomial* case: when J(f) is connected, rays as preimages of radial lines under Böttcher's map.

• In the *polynomial* case: when J(f) is connected, rays as preimages of radial lines under Böttcher's map.

• In the *polynomial* case: when J(f) is connected, rays as preimages of radial lines under Böttcher's map.

• In the polynomial case: when J(f) is connected, rays as preimages of radial lines under Böttcher's map.

All rays land if and only if J(f) is locally connected.

 \star Existence of rays for entire~transcendental functions?

- * Existence of rays for *entire transcendental* functions?
 - First examples for $f_{\lambda}(z) = \lambda e^z$. (Devaney et. al. '84-86).

- * Existence of rays for entire transcendental functions?
 - First examples for $f_{\lambda}(z) = \lambda e^z$. (Devaney et. al. '84-86).
 - In 1989, Eremenko conjectured that every point $z \in I(f)$ could be joined with ∞ by a curve in I(f).

- * Existence of rays for entire transcendental functions?
 - First examples for $f_{\lambda}(z) = \lambda e^z$. (Devaney et. al. '84-86).
 - In 1989, Eremenko conjectured that every point $z \in I(f)$ could be joined with ∞ by a curve in I(f).
 - True for $f_{\lambda}(z) = \lambda e^z$. (Rottenfußer & Schleicher '03).

- * Existence of rays for entire transcendental functions?
 - First examples for $f_{\lambda}(z) = \lambda e^z$. (Devaney et. al. '84-86).
 - In 1989, Eremenko conjectured that every point $z \in I(f)$ could be joined with ∞ by a curve in I(f).
 - True for $f_{\lambda}(z) = \lambda e^{z}$. (Rottenfußer & Schleicher '03).
 - True for $E_{a,b}(z) = ae^z + be^{-z}$, (Schleicher & Zimmer '04).

- * Existence of rays for *entire transcendental* functions?
 - First examples for $f_{\lambda}(z) = \lambda e^z$. (Devaney et. al. '84-86).
 - In 1989, Eremenko conjectured that every point $z \in I(f)$ could be joined with ∞ by a curve in I(f).
 - True for $f_{\lambda}(z) = \lambda e^z$. (Rottenfußer & Schleicher '03).
 - True for $E_{a,b}(z) = ae^z + be^{-z}$, (Schleicher & Zimmer '04).
 - False in general; a counterexample is constructed in: (Rottenfußer, Rückert, Rempe-Gillen & Schleicher '11 [RRRS].)

- * Existence of rays for *entire transcendental* functions?
 - First examples for $f_{\lambda}(z) = \lambda e^z$. (Devaney et. al. '84-86).
 - In 1989, Eremenko conjectured that every point $z \in I(f)$ could be joined with ∞ by a curve in I(f).
 - True for $f_{\lambda}(z) = \lambda e^z$. (Rottenfußer & Schleicher '03).
 - True for $E_{a,b}(z) = ae^z + be^{-z}$, (Schleicher & Zimmer '04).
 - False in general; a counterexample is constructed in: (Rottenfußer, Rückert, Rempe-Gillen & Schleicher '11 [RRRS].)
 - True for functions of finite order in class \mathcal{B} .([RRRS]).

Singular values

The set of singular values S(f) is the smallest closed subset of \mathbb{C} such that $f: \mathbb{C} \setminus S(f) \to \mathbb{C} \setminus S(f)$ is a covering map.

Singular values

The set of singular values S(f) is the smallest closed subset of \mathbb{C} such that $f: \mathbb{C} \setminus S(f) \to \mathbb{C} \setminus S(f)$ is a covering map.

$$S(f) = \overline{\{ \text{ asymptotic and critical values of } f \}}$$

* f entire transcendental is in class \mathcal{B} if S(f) is bounded.

Singular values

The set of singular values S(f) is the smallest closed subset of \mathbb{C} such that $f: \mathbb{C} \setminus S(f) \to \mathbb{C} \setminus S(f)$ is a covering map.

$$S(f) = \overline{\{ \text{ asymptotic and critical values of } f \}}$$

* f entire transcendental is in class \mathcal{B} if S(f) is bounded.

The **postsingular set** of f is defined as

$$P(f) = \overline{\bigcup_{n>0} f^n(S(f))}.$$

 $\star f^k : \mathbb{C} \setminus \mathcal{O}^-(S(f)) \to \mathbb{C} \setminus P(f)$ is a covering map for all $k \geq 0$.

Definition ([RRRS])

• a ray tail is an injective curve $\gamma:[t_0,\infty)\to I(f)$, with $t_0 > 0$ such that

- a ray tail is an injective curve $\gamma:[t_0,\infty)\to I(f)$, with $t_0>0$ such that
 - For each $n \ge 1$, $f^n(\gamma(t))$ is injective and $\lim_{t \to \infty} f^n(\gamma(t)) = \infty$.

- a ray tail is an injective curve $\gamma:[t_0,\infty)\to I(f)$, with $t_0>0$ such that
 - For each $n \ge 1$, $f^n(\gamma(t))$ is injective and $\lim_{t \to \infty} f^n(\gamma(t)) = \infty$.
 - $f^n(\gamma(t)) \xrightarrow{n \to \infty} \infty$ uniformly in t.

- a ray tail is an injective curve $\gamma:[t_0,\infty)\to I(f)$, with $t_0>0$ such that
 - For each $n \ge 1$, $f^n(\gamma(t))$ is injective and $\lim_{t \to \infty} f^n(\gamma(t)) = \infty$.
 - $f^n(\gamma(t)) \xrightarrow{n \to \infty} \infty$ uniformly in t.
- A dynamic ray of f is a maximal injective curve $\gamma:(0,\infty)\to I(f)$ such that $\gamma_{|[t,\infty)}$ is a ray tail for every t>0.

- a ray tail is an injective curve $\gamma:[t_0,\infty)\to I(f)$, with $t_0 > 0$ such that
 - For each $n \ge 1$, $f^n(\gamma(t))$ is injective and $\lim_{t \to \infty} f^n(\gamma(t)) = \infty$.
 - $f^n(\gamma(t)) \xrightarrow{n \to \infty} \infty$ uniformly in t.
- A dynamic ray of f is a maximal injective curve $\gamma:(0,\infty)\to I(f)$ such that $\gamma_{|[t,\infty)}$ is a ray tail for every t>0.
- We say that γ lands at z if $\lim_{t\to 0} \gamma(t) = z$.

• In the **exponential family**, $E_{\lambda}(z) = \lambda e^z$, all rays land when E_{λ} has an attracting or parabolic orbit. (Devaney '93, Devaney & Jarque '01, Rempe-Gillen '06).

^{*}Picture by Rempe-Gillen

• In the cosine family, $E_{a,b}(z) = ae^z + be^{-z}$, all rays land when P(f) is strictly preperiodic (Schleicher '06).

^{*}Picture by Arnaud Chritat

Mihaljević-Brandt ('12) extends Schleicher's result for a large class of functions in class \mathcal{B} with bounded singular orbits.

Mihaljević-Brandt ('12) extends Schleicher's result for a large class of functions in class \mathcal{B} with bounded singular orbits.

More specifically:

• $P(f) \cap F(f)$ compact and $P(f) \cap J(f)$ finite. (Subhyperbolic functions).

Mihaljević-Brandt ('12) extends Schleicher's result for a large class of functions in class \mathcal{B} with bounded singular orbits.

More specifically:

- $P(f) \cap F(f)$ compact and $P(f) \cap J(f)$ finite. (Subhyperbolic functions).
- $AV(f) \cap J(f) = \emptyset$ and f has bounded criticality in J(f). (Strongly subhyperbolic functions).

Mihaljević-Brandt ('12) extends Schleicher's result for a large class of functions in class \mathcal{B} with bounded singular orbits.

More specifically:

- $P(f) \cap F(f)$ compact and $P(f) \cap J(f)$ finite. (Subhyperbolic functions).
- $AV(f) \cap J(f) = \emptyset$ and f has bounded criticality in J(f). (Strongly subhyperbolic functions).

Theorem ([M-B ('12)])

If f is of finite order and strongly subhyperbolic, then every dynamic ray of J(f) lands

Mihaljević-Brandt ('12) extends Schleicher's result for a large class of functions in class \mathcal{B} with bounded singular orbits.

More specifically:

- $P(f) \cap F(f)$ compact and $P(f) \cap J(f)$ finite. (Subhyperbolic functions).
- $AV(f) \cap J(f) = \emptyset$ and f has bounded criticality in J(f). (Strongly subhyperbolic functions).

Theorem ([M-B ('12)])

If f is of finite order and strongly subhyperbolic, then every dynamic ray of J(f) lands and every point in J(f) is a landing point or in a dynamic ray.

Strongly poscritically separated functions Definition

We say that f in Class \mathcal{B} is strongly postcritically separated if:

Strongly poscritically separated functions

Definition

We say that f in Class \mathcal{B} is strongly postcritically separated if:

• $AV(f) \cap J(f) = \emptyset$ and f has bounded criticality in J(f).

Strongly poscritically separated functions

Definition

We say that f in Class \mathcal{B} is strongly postcritically separated if:

• $P(f) \cap F(f)$ compact and $P(f) \cap J(f)$ discrete.

• $AV(f) \cap J(f) = \emptyset$ and f has bounded criticality in J(f).

- A ray tail is an injective curve $\gamma:[t_0,\infty)\to I(f)$, with $t_0 > 0$ such that
 - For each $n \ge 1$, $f^n(\gamma(t))$ is injective and $\lim_{t \to \infty} f^n(\gamma(t)) = \infty$.
 - $f^n(\gamma(t)) \xrightarrow{n \to \infty} \infty$ uniformly in t.
- A dynamic ray of f is a maximal injective curve $\gamma:(0,\infty)\to I(f)$ such that $\gamma_{|[t,\infty)}$ is a ray tail for every t>0.
- We say that γ lands at z if $\lim_{t\to 0} \gamma(t) = z$

Strongly poscritically separated functions

Definition

We say that f in Class \mathcal{B} is strongly postcritically separated if:

• $P(f) \cap F(f)$ compact and $P(f) \cap J(f)$ discrete.

• $AV(f) \cap J(f) = \emptyset$ and f has bounded criticality in J(f).

Strongly poscritically separated functions

Definition

We say that f in Class \mathcal{B} is strongly postcritically separated if:

- $P(f) \cap F(f)$ compact and $P(f) \cap J(f)$ discrete.
- There exist M > 0, K > 1 such that for all r > 0

$$|\{z \in P(f) \text{ such that } z \in A(r, Kr)\}| \le M.$$

• AV $(f) \cap J(f) = \emptyset$ and f has bounded criticality in J(f).

Strongly poscritically separated functions

Definition

We say that f in Class \mathcal{B} is strongly postcritically separated if:

- $P(f) \cap F(f)$ compact and $P(f) \cap J(f)$ discrete.
- There exist M > 0, K > 1 such that for all r > 0

$$|\{z \in P(f) \text{ such that } z \in A(r, Kr)\}| \le M.$$

• $AV(f) \cap J(f) = \emptyset$ and f has bounded criticality in J(f).

Strongly poscritically separated functions

Definition

We say that f in Class \mathcal{B} is strongly postcritically separated if:

- $P(f) \cap F(f)$ compact and $P(f) \cap J(f)$ discrete.
- There exist M>0, K>1 such that for all r>0

$$|\{z \in P(f) \text{ such that } z \in A(r, Kr)\}| \le M.$$

• AV $(f) \cap J(f) = \emptyset$ and f has bounded criticality in J(f).

Theorem A

Let f strongly postcritically separated and of finite order. Then every dynamic ray of f lands

Strongly poscritically separated functions

Definition

We say that f in Class \mathcal{B} is strongly postcritically separated if:

- $P(f) \cap F(f)$ compact and $P(f) \cap J(f)$ discrete.
- There exist M > 0, K > 1 such that for all r > 0

$$|\{z \in P(f) \text{ such that } z \in A(r, Kr)\}| \le M.$$

• $AV(f) \cap J(f) = \emptyset$ and f has bounded criticality in J(f).

Theorem A

Let f strongly postcritically separated and of finite order. Then every dynamic ray of f lands and every point in J(f) is either on a dynamic ray or the landing point of a dynamic ray.

 \star What can we say about the topological structure of J(f)?

- * What can we say about the topological structure of J(f)?
 - If $f \in \mathcal{B}$ is of finite order and of disjoint type (i.e. $P(f) \subseteq \mathcal{F}(f)$ connected), then J(f) is a *Cantor Bouquet*. (Barański, Jarque & Rempe-Gillen '12)

- * What can we say about the topological structure of J(f)?
 - If $f \in \mathcal{B}$ is of finite order and of disjoint type (i.e. $P(f) \subseteq \mathcal{F}(f)$ connected), then J(f) is a Cantor Bouquet. (Barański, Jarque & Rempe-Gillen '12)

 \star What can we say about the topological structure of J(f)?

- * What can we say about the topological structure of J(f)?
 - If $f \in \mathcal{B}$ is of finite order and strongly subhyperbolic, then J(f) is a *Pinched Cantor Bouquet*. [M-B ('12)]

Conjugacy near infinity

An analogue of Böttcher's Theorem for transcendental maps:

Conjugacy near infinity

An analogue of Böttcher's Theorem for transcendental maps:

Let $f \in \mathcal{B}$, and let $g := \lambda f$ of disjoint type (for some $\lambda \in \mathbb{C}$ with $|\lambda| < 1$).

Conjugacy near infinity

An analogue of Böttcher's Theorem for transcendental maps:

Let $f \in \mathcal{B}$, and let $g := \lambda f$ of disjoint type (for some $\lambda \in \mathbb{C}$ with $|\lambda| < 1$).

Theorem ([Rempe-Gillen ('09)])

There exist a constant R > 0 and a quasiconformal map $\vartheta : \mathbb{C} \to \mathbb{C}$ such that $\vartheta \circ f = g_{\lambda} \circ \vartheta$ for all $z \in J_R(g)$, with

$$J_R(g_{\lambda}) := \{ z \in J(g) : |g_{\lambda}^n(z)| \ge R \text{ for all } n \ge 1 \}.$$

Constructing a model

If $g := \lambda f$ is of disjoint type and finite order, then J(g) is a Cantor Bouquet.

Constructing a model

If $g := \lambda f$ is of disjoint type and finite order, then J(g) is a Cantor Bouquet.

Strategy: Extend the conjugacy near infinity to J(f) by considering the model space

$$(J(g)_{\pm},\tau)$$
,

with $J(g)_+ := J(g) \times \{-, +\}$ and τ appropriate topology that preserves the circular order of the rays, using the map $\tilde{q}: J(q)_+ \to J(f)$

$$\tilde{g}(z,\sigma) := (g(z),\sigma).$$

Results

Let f in Class \mathcal{B} , of finite order and strongly postcritically separated; and let $g = \lambda f$ of disjoint type.

Results

Let f in Class \mathcal{B} , of finite order and strongly postcritically separated; and let $g = \lambda f$ of disjoint type.

Theorem B

There exists a continuous surjective function $\varphi : \mathcal{J}(g)_{\pm} \to \mathcal{J}(f)$ so that

$$f\circ\varphi=\varphi\circ\tilde{g}.$$

Moreover, $\varphi(I(g)_{\pm}) = I(f)$.

Results

Let f in Class \mathcal{B} , of finite order and strongly postcritically separated; and let $g = \lambda f$ of disjoint type.

Theorem B

There exists a continuous surjective function $\varphi : \mathcal{J}(g)_{\pm} \to \mathcal{J}(f)$ so that

$$f\circ\varphi=\varphi\circ\tilde{g}.$$

Moreover, $\varphi(I(g)_{\pm}) = I(f)$.

Theorem A

Every dynamic ray of f lands and every point in J(f) is either on a dynamic ray or the landing point of a dynamic ray.

Thanks for your attention!