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Notable sets

Definition

o Letf:(@—H@beapolynomialorf:(C—>(Ca
transcendental entire map.

e F(f): Fatou set J(f): Julia set

e The escaping set consists of the points that escape to
infinity under iteration:

I(f)={z€C: f*(z) = o0}

Frequently structured in curves called dynamic rays.
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Structure of the escaping set

e In the polynomial case: when J(f) is connected, rays as
preimages of radial lines under Bottcher’s map.

All rays land if and only if J(f) is locally connected.
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Structure of the escaping set

* Existence of rays for entire transcendental functions?

e First examples for fy(z) = Ae®. (Devaney et. al. '84-86).

e In 1989, Eremenko conjectured that every point z € I(f)
could be joined with oo by a curve in I(f).

True for fy(z) = Ae®. (Rottenfufler & Schleicher '03).

True for E, (z) = ae® + be™*, (Schleicher & Zimmer *04).

False in general; a counterexample is constructed in:
(RottenfuBer, Riickert, Rempe-Gillen & Schleicher '11 [RRRS].)

True for functions of finite order in class B.([RRRS]).
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Singular values

The set of singular values S(f) is the smallest closed subset
of C such that f: C\ S(f) = C\ S(f) is a covering map.

S(f) = { asymptotic and critical values of f }
* f entire transcendental is in class B if S(f) is bounded.

The postsingular set of f is defined as

P(f) = f(S(£).

n>0

*x fF:C\ O~ (S(f)) — C\ P(f) is a covering map for all k > 0.
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Dynamic rays

Definition ([RRRS])

e aray tail is an injective curve 7 : [tg,00) — I(f), with
to > 0 such that
e For each n > 1, f™(vy(t)) is injective and tlim ff(y(t) = .
—00

n—oo

e f*(y(t)) —— oo uniformly in ¢.

e A dynamic ray of f is a maximal injective curve
7y :(0,00) = I(f) such that 7);; o is a ray tail for every
t>0.

e We say that v lands at z if limy_,gy(t) = z.
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Landing rays for transcendental functions

e In the exponential family, F)(z) = \e?, all rays land
when E) has an attracting or parabolic orbit. (Devaney '93,
Devaney & Jarque '01, Rempe-Gillen 06).

*Picture by Rempe-Gillen
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Landing rays for transcendental functions

e In the cosine family, F,;(z) = ae® + be™?, all rays land
when P(f) is strictly preperiodic (Schleicher *06) .

W/////////////////// y
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*Picture by Arnaud Chritat
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Landing rays for transcendental functions

Mihaljevié-Brandt (’12) extends Schleicher’s result for a large
class of functions in class B with bounded singular orbits.

More specifically:

e P(f)NF(f) compact and P(f)NJ(f) finite.
(Subhyperbolic functions).

e AV(f)NJ(f) =0 and f has bounded criticality in J(f).
(Strongly subhyperbolic functions).

Theorem ([M-B (’12)])

If f is of finite order and strongly subhyperbolic, then every
dynamic ray of J(f) lands and every point in J(f) is a landing
point or in a dynamic ray.
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Dynamic rays

Definition ([RRRS])

e A ray tail is an injective curve = : [tg,00) — I(f), with
to > 0 such that
e For each n > 1, f™(vy(t)) is injective and tlim f(y(t)) = co.
—>00

n—oo

e f*(y(t)) —— oo uniformly in ¢.

e A dynamic ray of f is a maximal injective curve
7y : (0,00) = I(f) such that 7);; o is a ray tail for every
t>0.

e We say that v lands at z if limy_,07y(t) = 2
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Strongly poscritically separated functions

Definition
We say that f in Class B is strongly postcritically
separated if:
e P(f)N F(f) compact and P(f)NJ(f) discrete.
e There exist M > 0, K > 1 such that for all » > 0

[{z € P(f) such that z € A(r, Kr)}| < M.
e AV(f)NJ(f) =0 and f has bounded criticality in J(f).

Theorem A

Let f strongly postcritically separated and of finite order. Then
every dynamic ray of f lands and every point in J(f) is either
on a dynamic ray or the landing point of a dynamic ray.
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Topological structure of the Julia set

* What can we say about the topological structure of J(f)?

e If f € B is of finite order and strongly subhyperbolic, then
J(f) is a Pinched Cantor Bouquet. [M-B (’12)]

)
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Conjugacy near infinity
An analogue of Bottcher’s Theorem for transcendental maps:

Let f € B, and let g := Af of disjoint type (for some A € C with
[A] < 1).

Theorem ([Rempe-Gillen (’09)])

There exist a constant R > 0 and a quasiconformal map
¥ : C — C such that 9o f = gy o9 for all z € Jg(g), with

Jr(gx) :=={z € J(9) : |gh(z)| > R for all n > 1}.
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Constructing a model

If g := \f is of disjoint type and finite order, then J(g) is a
Cantor Bouquet.

Strategy: Extend the conjugacy near infinity to J(f) by
considering the model space

(J(9)+,7),

with J(g)+ := J(g) x {—,+} and 7 appropriate topology that
preserves the circular order of the rays, using the map
g:J(g)x — J(f)

§(z,0) = (9(2),0).
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Results

Let f in Class B, of finite order and strongly postcritically
separated; and let g = Af of disjoint type.

Theorem B
There exists a continuous surjective function ¢ : J(g9)+ — J(f)
so that

fop=vpog.

Moreover, ¢(I(g)+) = I(f).
Theorem A

Every dynamic ray of f lands and every point in J(f) is either
on a dynamic ray or the landing point of a dynamic ray.



Thanks for your attention!
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