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Motivation Dynamic rays Constructing a model Results

Notable sets

Definition

• Let f : Ĉ→ Ĉ be a polynomial or f : C→ C a
transcendental entire map.

• F (f): Fatou set J(f): Julia set

• The escaping set consists of the points that escape to
infinity under iteration:

I(f) = {z ∈ C : fn(z)→∞}

Frequently structured in curves called dynamic rays.
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• Let f : Ĉ→ Ĉ be a polynomial or f : C→ C a
transcendental entire map.

• F (f): Fatou set J(f): Julia set

• The escaping set consists of the points that escape to
infinity under iteration:

I(f) = {z ∈ C : fn(z)→∞}

Frequently structured in curves called dynamic rays.



Motivation Dynamic rays Constructing a model Results

Structure of the escaping set

• In the polynomial case: when J(f) is connected, rays as
preimages of radial lines under Böttcher’s map.

All rays land if and only if J(f) is locally connected.
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All rays land if and only if J(f) is locally connected.



Motivation Dynamic rays Constructing a model Results

Structure of the escaping set

• In the polynomial case: when J(f) is connected, rays as
preimages of radial lines under Böttcher’s map.
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Structure of the escaping set

? Existence of rays for entire transcendental functions?

• First examples for fλ(z) = λez. (Devaney et. al. ’84-86).

• In 1989, Eremenko conjectured that every point z ∈ I(f)
could be joined with ∞ by a curve in I(f).

• True for fλ(z) = λez. (Rottenfußer & Schleicher ’03).

• True for Ea,b(z) = aez + be−z, (Schleicher & Zimmer ’04).

• False in general; a counterexample is constructed in:
(Rottenfußer, Rückert, Rempe-Gillen & Schleicher ’11 [RRRS].)

• True for functions of finite order in class B.([RRRS]).
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Singular values

The set of singular values S(f) is the smallest closed subset
of C such that f : C \ S(f)→ C \ S(f) is a covering map.

S(f) = { asymptotic and critical values of f }

? f entire transcendental is in class B if S(f) is bounded.

The postsingular set of f is defined as

P (f) =
⋃
n≥0

fn(S(f)).

? fk : C \ O−(S(f))→ C \ P (f) is a covering map for all k ≥ 0.
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Dynamic rays

Definition ([RRRS])

• a ray tail is an injective curve γ : [t0,∞)→ I(f), with
t0 > 0 such that

• For each n ≥ 1, fn(γ(t)) is injective and lim
t→∞

fn(γ(t)) =∞.

• fn(γ(t))
n→∞−−−−→∞ uniformly in t.

• A dynamic ray of f is a maximal injective curve
γ : (0,∞)→ I(f) such that γ|[t,∞) is a ray tail for every
t > 0.

• We say that γ lands at z if limt→0 γ(t) = z.
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Landing rays for transcendental functions

• In the exponential family, Eλ(z) = λez, all rays land
when Eλ has an attracting or parabolic orbit. (Devaney ’93,

Devaney & Jarque ’01, Rempe-Gillen ’06).

*Picture by Rempe-Gillen
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Landing rays for transcendental functions

• In the cosine family, Ea,b(z) = aez + be−z, all rays land
when P (f) is strictly preperiodic (Schleicher ’06) .

*Picture by Arnaud Chritat
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Landing rays for transcendental functions

Mihaljević-Brandt (’12) extends Schleicher’s result for a large
class of functions in class B with bounded singular orbits.

More specifically:

• P (f) ∩ F (f) compact and P (f) ∩ J(f) finite.
(Subhyperbolic functions).

• AV(f) ∩ J(f) = ∅ and f has bounded criticality in J(f).
(Strongly subhyperbolic functions).

Theorem ([M-B (’12)])

If f is of finite order and strongly subhyperbolic, then every
dynamic ray of J(f) lands and every point in J(f) is a landing
point or in a dynamic ray.
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Mihaljević-Brandt (’12) extends Schleicher’s result for a large
class of functions in class B with bounded singular orbits.

More specifically:

• P (f) ∩ F (f) compact and P (f) ∩ J(f) finite.
(Subhyperbolic functions).

• AV(f) ∩ J(f) = ∅ and f has bounded criticality in J(f).
(Strongly subhyperbolic functions).

Theorem ([M-B (’12)])

If f is of finite order and strongly subhyperbolic, then every
dynamic ray of J(f) lands and every point in J(f) is a landing
point or in a dynamic ray.



Motivation Dynamic rays Constructing a model Results

Landing rays for transcendental functions
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Strongly poscritically separated functions
Definition
We say that f in Class B is strongly postcritically
separated if:

• P (f) ∩ F (f) compact and P (f) ∩ J(f) discrete.

• AV(f) ∩ J(f) = ∅ and f has bounded criticality in J(f).
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Strongly poscritically separated functions

Definition
We say that f in Class B is strongly postcritically
separated if:

• P (f) ∩ F (f) compact and P (f) ∩ J(f) discrete.

• There exist M > 0,K > 1 such that for all r > 0

|
{
z ∈ P (f) such that z ∈ A(r,Kr)

}
| ≤M.

• AV(f) ∩ J(f) = ∅ and f has bounded criticality in J(f).

Theorem A
Let f strongly postcritically separated and of finite order. Then
every dynamic ray of f lands and every point in J(f) is either
on a dynamic ray or the landing point of a dynamic ray.
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Topological structure of the Julia set

? What can we say about the topological structure of J(f)?

• If f ∈ B is of finite order and of disjoint type (i.e.

P (f) b F(f) connected), then J(f) is a Cantor Bouquet.
(Barański, Jarque & Rempe-Gillen ’12)
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Conjugacy near infinity

An analogue of Böttcher’s Theorem for transcendental maps:

Let f ∈ B, and let g := λf of disjoint type (for some λ ∈ C with

|λ| < 1).

Theorem ([Rempe-Gillen (’09)])

There exist a constant R > 0 and a quasiconformal map
ϑ : C→ C such that ϑ ◦ f = gλ ◦ ϑ for all z ∈ JR(g), with

JR(gλ) := {z ∈ J(g) : |gnλ(z)| ≥ R for all n ≥ 1}.
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Constructing a model

If g := λf is of disjoint type and finite order, then J(g) is a
Cantor Bouquet.

Strategy: Extend the conjugacy near infinity to J(f) by
considering the model space

(J(g)±, τ) ,

with J(g)± := J(g)× {−,+} and τ appropriate topology that
preserves the circular order of the rays, using the map
g̃ : J(g)± → J(f)

g̃(z, σ) := (g(z), σ).
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Results

Let f in Class B, of finite order and strongly postcritically
separated; and let g = λf of disjoint type.

Theorem B
There exists a continuous surjective function ϕ : J (g)± → J (f)
so that

f ◦ ϕ = ϕ ◦ g̃.

Moreover, ϕ(I(g)±) = I(f).

Theorem A
Every dynamic ray of f lands and every point in J(f) is either
on a dynamic ray or the landing point of a dynamic ray.
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Thanks for your attention!
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