Escaping singular orbits in Class β

Leticia Pardo Simón

University of Liverpool

Supervisor: Prof. L. Rempe-Gillen

Workshop on Complex Dynamics, RIMS, Kyoto. 12^{th} December, 2017

Notable sets

Definition

+ Let $f:\widehat{\mathbb{C}}\to\widehat{\mathbb{C}}$ be a polynomial or $f:\mathbb{C}\to\mathbb{C}$ a transcendental entire map.

Notable sets

Definition

- + Let $f:\widehat{\mathbb{C}}\to\widehat{\mathbb{C}}$ be a polynomial or $f:\mathbb{C}\to\mathbb{C}$ a transcendental entire map.
- $F(f)$: Fatou set $J(f)$: Julia set

Notable sets

Definition

- Let $f : \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ be a polynomial or $f : \mathbb{C} \to \mathbb{C}$ a transcendental entire map.
- $F(f)$: Fatou set $J(f)$: Julia set
- The **escaping set** consists of the points that escape to infinity under iteration:

$$
I(f) = \{ z \in \mathbb{C} : f^n(z) \to \infty \}
$$

Frequently structured in curves called dynamic rays.

• In the *polynomial* case: when $J(f)$ is connected, rays as preimages of radial lines under Böttcher's map.

• In the *polynomial* case: when $J(f)$ is connected, rays as preimages of radial lines under Böttcher's map.

• In the *polynomial* case: when $J(f)$ is connected, rays as preimages of radial lines under Böttcher's map.

• In the *polynomial* case: when $J(f)$ is connected, rays as preimages of radial lines under Böttcher's map.

All rays land if and only if $J(f)$ is locally connected.

 \star Existence of rays for *entire transcendental* functions?

• First examples for $f_{\lambda}(z) = \lambda e^{z}$. (Devaney et. al. '84-86).

- First examples for $f_{\lambda}(z) = \lambda e^{z}$. (Devaney et. al. '84-86).
- In 1989, Eremenko *conjectured* that every point $z \in I(f)$ could be joined with ∞ by a curve in $I(f)$.

- First examples for $f_{\lambda}(z) = \lambda e^{z}$. (Devaney et. al. '84-86).
- In 1989, Eremenko *conjectured* that every point $z \in I(f)$ could be joined with ∞ by a curve in $I(f)$.
	- True for $f_{\lambda}(z) = \lambda e^{z}$. (Rottenfußer & Schleicher '03).

- First examples for $f_{\lambda}(z) = \lambda e^{z}$. (Devaney et. al. '84-86).
- In 1989, Eremenko *conjectured* that every point $z \in I(f)$ could be joined with ∞ by a curve in $I(f)$.
	- True for $f_{\lambda}(z) = \lambda e^{z}$. (Rottenfußer & Schleicher '03).
	- True for $E_{a,b}(z) = ae^z + be^{-z}$, (Schleicher & Zimmer '04).

- First examples for $f_{\lambda}(z) = \lambda e^{z}$. (Devaney et. al. '84-86).
- In 1989, Eremenko *conjectured* that every point $z \in I(f)$ could be joined with ∞ by a curve in $I(f)$.
	- True for $f_{\lambda}(z) = \lambda e^{z}$. (Rottenfußer & Schleicher '03).
	- True for $E_{a,b}(z) = ae^z + be^{-z}$, (Schleicher & Zimmer '04).
	- False in general; a counterexample is constructed in: (Rottenfußer, R¨uckert, Rempe-Gillen & Schleicher '11 [RRRS].)

- First examples for $f_{\lambda}(z) = \lambda e^{z}$. (Devaney et. al. '84-86).
- In 1989, Eremenko *conjectured* that every point $z \in I(f)$ could be joined with ∞ by a curve in $I(f)$.
	- True for $f_{\lambda}(z) = \lambda e^{z}$. (Rottenfußer & Schleicher '03).
	- True for $E_{a,b}(z) = ae^z + be^{-z}$, (Schleicher & Zimmer '04).
	- False in general; a counterexample is constructed in: (Rottenfußer, R¨uckert, Rempe-Gillen & Schleicher '11 [RRRS].)
	- True for functions of finite order in class \mathcal{B} .([RRRS]).

Singular values

The set of **singular values** $S(f)$ is the smallest closed subset of $\mathbb C$ such that $f : \mathbb C \setminus S(f) \to \mathbb C \setminus S(f)$ is a covering map.

Singular values

The set of **singular values** $S(f)$ is the smallest closed subset of $\mathbb C$ such that $f : \mathbb C \setminus S(f) \to \mathbb C \setminus S(f)$ is a covering map.

 $S(f) = \{$ asymptotic and critical values of f $\}$

 \star f entire transcendental is in class B if $S(f)$ is bounded.

Singular values

The set of **singular values** $S(f)$ is the smallest closed subset of $\mathbb C$ such that $f : \mathbb C \setminus S(f) \to \mathbb C \setminus S(f)$ is a covering map.

 $S(f) = \{$ asymptotic and critical values of f $\}$

 \star f entire transcendental is in class B if $S(f)$ is bounded.

The **postsingular set** of f is defined as

$$
P(f) = \bigcup_{n \ge 0} f^n(S(f)).
$$

 $f^k : \mathbb{C} \setminus \mathcal{O}^-(S(f)) \to \mathbb{C} \setminus P(f)$ is a covering map for all $k \geq 0$.

Definition ([RRRS])

• a ray tail is an injective curve $\gamma : [t_0, \infty) \to I(f)$, with $t_0 > 0$ such that

Definition ([RRRS])

- a ray tail is an injective curve $\gamma : [t_0, \infty) \to I(f)$, with $t_0 > 0$ such that
	- For each $n \geq 1$, $f^{n}(\gamma(t))$ is injective and $\lim_{t \to \infty} f^{n}(\gamma(t)) = \infty$.

Definition ([RRRS])

- a ray tail is an injective curve $\gamma : [t_0, \infty) \to I(f)$, with $t_0 > 0$ such that
	- For each $n \geq 1$, $f^{n}(\gamma(t))$ is injective and $\lim_{t \to \infty} f^{n}(\gamma(t)) = \infty$.

•
$$
f^{n}(\gamma(t)) \xrightarrow{n \to \infty} \infty
$$
 uniformly in t.

Definition ([RRRS])

- a ray tail is an injective curve $\gamma : [t_0, \infty) \to I(f)$, with $t_0 > 0$ such that
	- For each $n \geq 1$, $f^{n}(\gamma(t))$ is injective and $\lim_{t \to \infty} f^{n}(\gamma(t)) = \infty$.

•
$$
f^{n}(\gamma(t)) \xrightarrow{n \to \infty} \infty
$$
 uniformly in t.

• A dynamic ray of f is a maximal injective curve $\gamma:(0,\infty)\to I(f)$ such that $\gamma_{|[t,\infty)}$ is a ray tail for every $t > 0$.

Definition ([RRRS])

- a ray tail is an injective curve $\gamma : [t_0, \infty) \to I(f)$, with $t_0 > 0$ such that
	- For each $n \geq 1$, $f^{n}(\gamma(t))$ is injective and $\lim_{t \to \infty} f^{n}(\gamma(t)) = \infty$.

•
$$
f^{n}(\gamma(t)) \xrightarrow{n \to \infty} \infty
$$
 uniformly in t.

- A dynamic ray of f is a maximal injective curve $\gamma:(0,\infty)\to I(f)$ such that $\gamma_{|[t,\infty)}$ is a ray tail for every $t > 0$.
- We say that γ lands at z if $\lim_{t\to 0} \gamma(t) = z$.

• In the exponential family, $E_{\lambda}(z) = \lambda e^{z}$, all rays land when E_{λ} has an attracting or parabolic orbit. (Devaney '93, Devaney & Jarque '01, Rempe-Gillen '06).

*Picture by Rempe-Gillen

• In the cosine family, $E_{a,b}(z) = ae^z + be^{-z}$, all rays land when $P(f)$ is strictly preperiodic (Schleicher '06).

*Picture by Arnaud Chritat

Mihaljević-Brandt ('12) extends Schleicher's result for a large class of functions in class β with bounded singular orbits.

Mihaljević-Brandt (12) extends Schleicher's result for a large class of functions in class β with bounded singular orbits.

More specifically:

• $P(f) \cap F(f)$ compact and $P(f) \cap J(f)$ finite. (Subhyperbolic functions).

Mihaljević-Brandt ('12) extends Schleicher's result for a large class of functions in class β with bounded singular orbits.

More specifically:

- $P(f) \cap F(f)$ compact and $P(f) \cap J(f)$ finite. (Subhyperbolic functions).
- AV $(f) \cap J(f) = \emptyset$ and f has bounded criticality in $J(f)$. (Strongly subhyperbolic functions).

Mihaljević-Brandt ('12) extends Schleicher's result for a large class of functions in class β with bounded singular orbits.

More specifically:

- $P(f) \cap F(f)$ compact and $P(f) \cap J(f)$ finite. (Subhyperbolic functions).
- AV $(f) \cap J(f) = \emptyset$ and f has bounded criticality in $J(f)$. (Strongly subhyperbolic functions).

Theorem ([M-B ('12)])

If f is of finite order and strongly subhyperbolic, then every dynamic ray of $J(f)$ lands

Mihaljević-Brandt ('12) extends Schleicher's result for a large class of functions in class β with bounded singular orbits.

More specifically:

- $P(f) \cap F(f)$ compact and $P(f) \cap J(f)$ finite. (Subhyperbolic functions).
- AV(f) $\cap J(f) = \emptyset$ and f has bounded criticality in $J(f)$. (Strongly subhyperbolic functions).

Theorem ([M-B ('12)])

If f is of finite order and strongly subhyperbolic, then every dynamic ray of $J(f)$ lands and every point in $J(f)$ is a landing point or in a dynamic ray.

Strongly poscritically separated functions Definition

We say that f in Class β is strongly postcritically separated if:

Strongly poscritically separated functions Definition We say that f in Class β is strongly postcritically separated if:

Strongly poscritically separated functions Definition

We say that f in Class β is strongly postcritically separated if:

• $P(f) \cap F(f)$ compact and $P(f) \cap J(f)$ discrete.

Definition ([RRRS])

- A ray tail is an injective curve $\gamma : [t_0, \infty) \to I(f)$, with $t_0 > 0$ such that
	- For each $n \geq 1$, $f^{n}(\gamma(t))$ is injective and $\lim_{t \to \infty} f^{n}(\gamma(t)) = \infty$.

•
$$
f^{n}(\gamma(t)) \xrightarrow{n \to \infty} \infty
$$
 uniformly in t.

- A dynamic ray of f is a maximal injective curve $\gamma:(0,\infty)\to I(f)$ such that $\gamma_{|[t,\infty)}$ is a ray tail for every $t > 0$.
- We say that γ lands at z if $\lim_{t\to 0} \gamma(t) = z$

Definition

We say that f in Class β is strongly postcritically separated if:

• $P(f) \cap F(f)$ compact and $P(f) \cap J(f)$ discrete.

Definition

We say that f in Class β is strongly postcritically separated if:

- $P(f) \cap F(f)$ compact and $P(f) \cap J(f)$ discrete.
- There exist $M > 0, K > 1$ such that for all $r > 0$

 $|\{z \in P(f) \text{ such that } z \in A(r,Kr)\}| \leq M.$

Definition

We say that f in Class β is strongly postcritically separated if:

- $P(f) \cap F(f)$ compact and $P(f) \cap J(f)$ discrete.
- There exist $M > 0, K > 1$ such that for all $r > 0$

 $|\{z \in P(f) \text{ such that } z \in A(r,Kr)\}| \leq M.$

Definition

We say that f in Class β is strongly postcritically separated if:

- $P(f) \cap F(f)$ compact and $P(f) \cap J(f)$ discrete.
- There exist $M > 0, K > 1$ such that for all $r > 0$

 $|\{z \in P(f) \text{ such that } z \in A(r,Kr)\}| \leq M.$

• AV(f) $\cap J(f) = \emptyset$ and f has bounded criticality in $J(f)$.

Theorem A

Let f strongly postcritically separated and of finite order. Then every dynamic ray of f lands

Definition

We say that f in Class β is strongly postcritically separated if:

- $P(f) \cap F(f)$ compact and $P(f) \cap J(f)$ discrete.
- There exist $M > 0, K > 1$ such that for all $r > 0$

 $|\{z \in P(f) \text{ such that } z \in A(r,Kr)\}| \leq M.$

• AV(f) $\cap J(f) = \emptyset$ and f has bounded criticality in $J(f)$.

Theorem A

Let f strongly postcritically separated and of finite order. Then every dynamic ray of f lands and every point in $J(f)$ is either on a dynamic ray or the landing point of a dynamic ray.

 \star What can we say about the *topological structure* of $J(f)$?

 \star What can we say about the *topological structure* of $J(f)$?

• If $f \in \mathcal{B}$ is of finite order and of disjoint type (i.e. $P(f) \in \mathcal{F}(f)$ connected), then $J(f)$ is a Cantor Bouquet. (Barański, Jarque & Rempe-Gillen '12)

 \star What can we say about the *topological structure* of $J(f)$?

• If $f \in \mathcal{B}$ is of finite order and of disjoint type (i.e. $P(f) \in \mathcal{F}(f)$ connected), then $J(f)$ is a Cantor Bouquet. (Barański, Jarque & Rempe-Gillen '12)

 \star What can we say about the *topological structure* of $J(f)$?

 \star What can we say about the *topological structure* of $J(f)$?

• If $f \in \mathcal{B}$ is of finite order and strongly subhyperbolic, then $J(f)$ is a Pinched Cantor Bouquet. [M-B ('12)]

Conjugacy near infinity

An *analogue* of Böttcher's Theorem for transcendental maps:

Conjugacy near infinity

An *analogue* of Böttcher's Theorem for transcendental maps:

Let $f \in \mathcal{B}$, and let $g := \lambda f$ of disjoint type (for some $\lambda \in \mathbb{C}$ with $|\lambda| < 1$).

Conjugacy near infinity

An *analogue* of Böttcher's Theorem for transcendental maps:

Let $f \in \mathcal{B}$, and let $g := \lambda f$ of disjoint type (for some $\lambda \in \mathbb{C}$ with $|\lambda| < 1$).

Theorem ([Rempe-Gillen ('09)])

There exist a constant $R > 0$ and a quasiconformal map $\vartheta : \mathbb{C} \to \mathbb{C}$ such that $\vartheta \circ f = g_{\lambda} \circ \vartheta$ for all $z \in J_R(g)$, with

$$
J_R(g_\lambda) := \{ z \in J(g) : |g_\lambda^n(z)| \ge R \text{ for all } n \ge 1 \}.
$$

Constructing a model

If $g := \lambda f$ is of disjoint type and finite order, then $J(g)$ is a Cantor Bouquet.

Constructing a model

If $g := \lambda f$ is of disjoint type and finite order, then $J(g)$ is a Cantor Bouquet.

Strategy: Extend the conjugacy near infinity to $J(f)$ by considering the model space

 $(J(q)_+,\tau)$,

with $J(q)_+ := J(q) \times \{-,+\}$ and τ appropriate topology that preserves the circular order of the rays, using the map $\tilde{q}: J(q)_+ \to J(f)$ $\tilde{q}(z,\sigma) := (q(z),\sigma).$

Results

Let f in Class \mathcal{B} , of finite order and strongly postcritically separated; and let $g = \lambda f$ of disjoint type.

Results

Let f in Class \mathcal{B} , of finite order and strongly postcritically separated; and let $q = \lambda f$ of disjoint type.

Theorem B

There exists a continuous surjective function $\varphi : \mathcal{J}(g)_\pm \to \mathcal{J}(f)$ so that

$$
f\circ \varphi=\varphi\circ \tilde g.
$$

Moreover, $\varphi(I(q)_+) = I(f)$.

Results

Let f in Class \mathcal{B} , of finite order and strongly postcritically separated; and let $q = \lambda f$ of disjoint type.

Theorem B

There exists a continuous surjective function $\varphi : \mathcal{J}(g)_\pm \to \mathcal{J}(f)$ so that

$$
f\circ \varphi=\varphi\circ \tilde g.
$$

Moreover, $\varphi(I(q)_+) = I(f)$.

Theorem A

Every dynamic ray of f lands and every point in $J(f)$ is either on a dynamic ray or the landing point of a dynamic ray.

Thanks for your attention!