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Basic definitions

@ f:C — Cis analytic
@ f"is the nth iterate of f

The Fatou set (or stable set) is

F(f) = {z: (f") is equicontinuous in some neighbourhood of z}.

The Fatou setis openand z € F(f) < f(z) € F(f).

Definition
The Julia set (or chaotic set) is

J(f) = C\ F(f).
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The escaping set

The escaping set is

I(f)={z: f"(z) = co as n — oc}.
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The escaping set is
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For polynomials:
@ /(f) is a neighbourhood
of oo;
@ points in /(f) escape at
same rate;
e I(f) C F(f);
e J(f) = 0lI(f).
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The escaping set

The escaping set is

I(f)={z:f"(z) > ccas n — oo}

For polynomials: For transcendental functions:
@ /(f) is a neighbourhood @ /(f) is not a neighbourhood of
of oo; o0;
@ points in /(f) escape at @ points in /(f) escape at
same rate; different rates;
@ [(f) C F(f); @ /(f) must meet J(f) and may

e J(f) = 0lI(f). meet F(f).
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Eremenko’s conjectures

Theorem (Eremenko, 1989)

If f is transcendental entire then

o J(f)nI(f) #0;
@ J(f) =0I(f);
@ all components of I(f) are unbounded.
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Eremenko’s conjectures

Theorem (Eremenko, 1989)

If f is transcendental entire then

o J(f)nI(f) # 0;
o J(f) = dI(f);
@ all components of I(f) are unbounded.

Eremenko’s conjectures
1. All components of /(f) are unbounded.
2. I(f) consists of curves to co.

Theorem (Rottenfusser, Riickert, Rempe and Schleicher, 2011)

Conjecture 2 holds for many functions in class B but fails for
others in class B.
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General results on Eremenko’s conjecture
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General results on Eremenko’s conjecture

Theorem (R+S, 2005, 2014)

I(f) has at least one unbounded component;
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General results on Eremenko’s conjecture

Theorem (R+S, 2005, 2014)

I(f) has at least one unbounded component; moreover, I(f) is
connected or it has infinitely many unbounded components.

Theorem (R+S, 2011)

I(f) U {oo} is connected and every bounded component of I(f)
meets J(f).
Theorem (R+S, 2017)

I(f) is connected or, for large R > 0, I(f)N{z : |z| > R} has
uncountably many unbounded components.
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The fast escaping set

Bergweiler and Hinkkanen, 1999

All these results were proved by studying fast escaping points.
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M(r) = max |f(z)|, forr>D0.
z|=r
If R is sufficiently large, then M"(R) — oo as n — oc.
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The fast escaping set

Bergweiler and Hinkkanen, 1999

All these results were proved by studying fast escaping points.
Let
M(r) = max |f(z)|, forr>D0.
z|=r
If R is sufficiently large, then M"(R) — oo as n — oc.
We consider the following ‘core’ set of fast escaping points.

Definition
Ag(f)={zeC:|f"(z)] > M"(R) for ne N}

The fast escaping set A(f) is the union of this set and all its
pre-images.

Theorem (R+S, 2005)

For large R > 0, all the components of Ag(f) are unbounded.
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Examples

Exponential functions - disconnected escaping set

f(z)=Xxe*,0< A< 1/e
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Examples

Exponential functions - disconnected escaping set

f(z)=Xxe*,0< A< 1/e

J(f) is a Cantor bouquet of
curves

I(f) consists of these
curves minus some of the
endpoints

A(f) consists of these
curves minus some of the
endpoints

Apg(f) is an uncountable

union of curves, for large
R>0
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Examples

Connected fast escaping set

f(z) = cosh? z
@ /(f) is connected
@ A(f) is connected

@ Ag(f) is an uncountable
union of curves, for large
R>0
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Examples

Spider’s web

f(z) = %(cosz”4 + cosh z'/4)

®



Examples

Spider’s web

E is a spider’s web if

@ E is connected;

@ there is a sequence of
bounded simply
connected domains G,
with

f(z) = %(cosz”4 + cosh z'/4)

0Gp C E, Gpy1 D Gp,

UG,,:(C.

neN

Each of /(f), A(f) and Ag(f) is connected and is a spider's web. [
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For each transcendental entire function there exists R > 0 such
that either
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"Cantor bouquets" or "spiders’ webs"

For each transcendental entire function there exists R > 0 such
that either

/ S

ARg(f) is a spider’s web.

Ag(f) has uncountably many
unbounded components




Sketch proof

There exists R > 0 for which either Ag(f) has uncountably
many unbounded components or Ag(f) is a spider’s web.
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Sketch proof

Theorem

There exists R > 0 for which either Ag(f) has uncountably
many unbounded components or Ag(f) is a spider’s web.

Step 1 Use Eremenko’s method (based on Wiman-Valiron
theory) to construct an ‘Eremenko point’ in Ag(f).
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Sketch proof

Theorem

There exists R > 0 for which either Ag(f) has uncountably
many unbounded components or Ag(f) is a spider’s web.

Step 1 Use Eremenko’s method (based on Wiman-Valiron
theory) to construct an ‘Eremenko point’ in Ag(f).

Step 2 Refine Eremenko’s method to construct uncountably
many points in Ag(f).

Step 3 Show that, if two of these points are in the same
component of Ag(f), then Ag(f) is a spider’s web.
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Thanks for your attention!
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