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Basic definitions

f : C→ C is analytic
f n is the nth iterate of f

Definition

The Fatou set (or stable set) is

F (f ) = {z : (f n) is equicontinuous in some neighbourhood of z}.

The Fatou set is open and z ∈ F (f ) ⇐⇒ f (z) ∈ F (f ).

Definition

The Julia set (or chaotic set) is

J(f ) = C \ F (f ).



The escaping set

Definition

The escaping set is

I(f ) = {z : f n(z)→∞ as n→∞}.

For polynomials:
I(f ) is a neighbourhood
of∞;
points in I(f ) escape at
same rate;
I(f ) ⊂ F (f );
J(f ) = ∂I(f ).

For transcendental functions:
I(f ) is not a neighbourhood of
∞;
points in I(f ) escape at
different rates;
I(f ) must meet J(f ) and may
meet F (f ).
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Eremenko’s conjectures

Theorem (Eremenko, 1989)

If f is transcendental entire then
J(f ) ∩ I(f ) 6= ∅;
J(f ) = ∂I(f );
all components of I(f ) are unbounded.

Eremenko’s conjectures
1. All components of I(f ) are unbounded.
2. I(f ) consists of curves to∞.

Theorem (Rottenfusser, Rückert, Rempe and Schleicher, 2011)

Conjecture 2 holds for many functions in class B but fails for
others in class B.
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General results on Eremenko’s conjecture

Theorem (R+S, 2005, 2014)

I(f ) has at least one unbounded component; moreover, I(f ) is
connected or it has infinitely many unbounded components.

Theorem (R+S, 2011)

I(f ) ∪ {∞} is connected and every bounded component of I(f )
meets J(f ).

Theorem (R+S, 2017)

I(f ) is connected or, for large R > 0, I(f ) ∩ {z : |z| ≥ R} has
uncountably many unbounded components.
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The fast escaping set
Bergweiler and Hinkkanen, 1999

All these results were proved by studying fast escaping points.

Let
M(r) = max

|z|=r
|f (z)|, for r > 0.

If R is sufficiently large, then Mn(R)→∞ as n→∞.
We consider the following ‘core’ set of fast escaping points.

Definition

AR(f ) = {z ∈ C : |f n(z)| ≥ Mn(R) for n ∈ N}

The fast escaping set A(f ) is the union of this set and all its
pre-images.

Theorem (R+S, 2005)

For large R > 0, all the components of AR(f ) are unbounded.
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Examples
Exponential functions - disconnected escaping set

f (z) = λez , 0 < λ < 1/e

J(f ) is a Cantor bouquet of
curves
I(f ) consists of these
curves minus some of the
endpoints
A(f ) consists of these
curves minus some of the
endpoints
AR(f ) is an uncountable
union of curves, for large
R > 0
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Examples
Fatou’s function - connected escaping set

f (z) = z + 1 + e−z

F (f ) is a Baker domain – a
periodic Fatou component
in I(f )
J(f ) is a Cantor bouquet of
curves - all in A(f ) apart
from some endpoints
I(f ) is connected
AR(f ) is an uncountable
union of curves, for large
R > 0
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Examples
Connected fast escaping set

f (z) = cosh2 z

I(f ) is connected
A(f ) is connected
AR(f ) is an uncountable
union of curves, for large
R > 0
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Examples
Spider’s web

f (z) = 1
2(cos z1/4 + cosh z1/4)

Definition

E is a spider’s web if
E is connected;
there is a sequence of
bounded simply
connected domains Gn
with

∂Gn ⊂ E , Gn+1 ⊃ Gn,⋃
n∈N

Gn = C.

Each of I(f ), A(f ) and AR(f ) is connected and is a spider’s web.
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"Cantor bouquets" or "spiders’ webs"

Theorem

For each transcendental entire function there exists R > 0 such
that either

AR(f ) has uncountably many
unbounded components

or

AR(f ) is a spider’s web.
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Sketch proof

Theorem

There exists R > 0 for which either AR(f ) has uncountably
many unbounded components or AR(f ) is a spider’s web.

Step 1 Use Eremenko’s method (based on Wiman-Valiron
theory) to construct an ‘Eremenko point’ in AR(f ).
Step 2 Refine Eremenko’s method to construct uncountably
many points in AR(f ).
Step 3 Show that, if two of these points are in the same
component of AR(f ), then AR(f ) is a spider’s web.
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Thanks for your attention!


