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Basic definitions

f : C→ C is transcendental entire

Definition

The Fatou set (or stable set) is

F (f ) = {z : (f n) is equicontinuous in some neighbourhood of z}.

Definition

The Julia set (or chaotic set) is

J(f ) = C \ F (f ).
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The escaping set

Definition

The escaping set is

I(f ) = {z : f n(z)→∞ as n→∞}.

Definition

The fast escaping set is A(f ) =
⋃

L∈N f−L(AR(f )) where:

AR(f ) = {z ∈ C : |f n(z)| ≥ Mn(R) ∀ n ∈ N},

if R > 0 is such that Mn(R)→∞ as n→∞.
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Periodic Fatou components

If U is a component of the Fatou set and f p(U) ⊂ U, then there
are four possibilities:

1 Attracting basin U contains an attracting p-periodic
point z0. For all z ∈ U, we have f np(z)→ z0 as n→∞.

2 Parabolic basin ∂U contains a parabolic p-periodic point
z0. For all z ∈ U, we have f np(z)→ z0 as n→∞.

3 Siegel disc There is a conformal mapping φ : U → D,
where D is the unit disc, such that φ(f p(φ−1(z))) = e2πiθz,
where θ is irrational.

4 Baker domain For all z ∈ U, we have f np(z)→∞ as
n→∞.
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Wandering domains

A Fatou component U is a wandering domain if

f n(U) ∩ f m(U) = ∅ for n 6= m.

Although rational functions have no wandering domains, there
are many examples of wandering domains for transcendental
entire functions.

Question Can we produce a classification of wandering
domains?
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A wandering cauliflower

f (z) = z cos z + 2π



Basic properties of multiply connected Fatou
components
Baker (for first two), Rippon and Stallard

Let U be a multiply connected Fatou component and
Un = f n(U). Then

U is a wandering domain
Un+1 surrounds Un for large n ∈ N
Un ⊂ AR(f ) for large n ∈ N
For large n, each component of the boundary of Un is a
component of AR(f ) ∩ J(f ).
AR(f ) is a spider’s web
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Structure of multiply connected wandering domains
Bergweiler, Rippon and Stallard

Theorem

If U is a multiply connected wandering domain and D ⊂ U is an
open neighborhood of z0, then there exists α > 0 such that, for
large n ∈ N,

f n(D) ⊃ A(|f n(z0)|1−α, |f n(z0)|1+α).

Theorem

If U is a multiply connected wandering domain then, for large
n ∈ N, there is an "absorbing annulus"

Bn = A(ran
n , rbn

n ) ⊂ Un

such that, for every compact set C ⊂ U,
f n(C) ⊂ Bn for n ≥ N(C).
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Connectivity of multiply connected wandering domains
Bergweiler, Rippon and Stallard

The inner connectivity of Un is the connectivity of
Un ∩ {z : |z| ≤ rn}

Theorem

Either
Un has infinite inner connectivity for all n ∈ N or
the inner connectivity of Un is finite and decreases to 2.

The outer connectivity of Un is defined in a similar way but
can decrease from infinity to a finite number.
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Connectivity of multiply connected wandering domains
discussed with Baumgartner and Bergweiler

Theorem

Let U be a multiply connected wandering domain.
If U has infinite inner connectivity then U has uncountably
many complementary components (only countably many of
which can have interior) and hence AR(f ) ∩ J(f ) has
uncountably many components.

If U has finite inner connectivity then U has only countably
many complementary components.

Corollary

There are examples of functions for which AR(f ) ∩ J(f ) has only
countably many components.
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Applications to a question about commuting functions

Question

If f , g are analytic with f ◦ g = g ◦ f , does J(f ) = J(g)?

Fatou and also Julia showed that the answer is "yes" if f and g
are rational.
Fatou’s proof
Fatou showed that g(F (f )) ⊂ F (f ) and hence F (f ) ⊂ F (g) by
Montel’s Theorem.
Julia’s proof
Based on repelling periodic points (in J(f )!).
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Transcendental functions

Theorem (Baker, 1962)

If f ◦ g = g ◦ f and U is a Fatou component of f , then
g(U) ⊂ F (f ) unless U ⊂ I(f ).

Theorem (Bergweiler and Hinkkanen, 1999)

If f ◦ g = g ◦ f and U is a Fatou component of f , then
g(U) ⊂ F (f ) unless U ⊂ A(f ).

Corollary

If f ◦ g = g ◦ f and f , g have no fast escaping Fatou
components, then J(f ) = J(g).
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Fast escaping Fatou components

Theorem (Bergweiler and Hinkkanen, 1999)

If U is a fast escaping Fatou component, then U is a wandering
domain.

Theorem (Rippon and Stallard, 2005)

If U is a multiply connected wandering domain, then U is fast
escaping.

There are only two known examples of functions with simply
connected fast escaping wandering domains:
one due to Bergweiler and one due to Sixsmith.
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Multiply connected wandering domains

Using the description of multiply connected wandering domains
given by Bergweiler, Rippon and Stallard, we were able to
prove the following.

Theorem (Benini, Rippon and Stallard, 2015)

If f ◦ g = g ◦ f and U is a multiply connected wandering domain
of f , then g(U) ⊂ F (f ).

Corollary

If f ◦ g = g ◦ f and f , g have no simply connected fast escaping
wandering domains, then J(f ) = J(g).
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