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Definition 1.

(1) Let Ĉ := C ∪ {∞} ∼= S2 be the Riemann sphere endowed with the

spherical distance d.

(2) Let Rat := {f : Ĉ → Ĉ | f is non-constant and holomorphic} endowed

with the distance η, where η(f, g) = supz∈Ĉ d(f(z), g(z)). Note that

(Rat, η) is a complete separable metric space.

(3) For a metric space Y , we denote by M1(Y ) the space of all Borel

probability measures on Y .

(4) For a subset Y of Rat, we set

M1,c(Y ) := {τ ∈ M1(Y ) | supp τ is a compact subset of Y }.

(5) For a τ ∈ M1,c(Rat), we set

Gτ := {γn ◦ · · · ◦ γ1 | n ∈ N, γj ∈ supp τ(∀j)}. Note that this is a

semigroup whose product is the composition of maps.

2



(6) We say that an element τ ∈ M1,c(Rat) is weakly mean stable if there

exist an n ∈ N, an m ∈ N, non-empty open subsets U1, . . . , Um of Ĉ,
a non-empty compact subset K of Ĉ with K ⊂ ∪m

j=1Uj , and a

constant c with 0 < c < 1 such that the following (a) (b) (c) hold.

(a) For each (γ1, . . . , γn) ∈ (supp τ)n, we have

γn ◦ · · · ◦ γ1(∪m
j=1Uj) ⊂ K.

Moreover, for each j = 1, . . . ,m, for all x, y ∈ Uj and

for each (γ1, . . . , γn) ∈ (supp τ)n, we have

d(γn ◦ · · · ◦ γ1(x), γn ◦ · · · ◦ γ1(y)) ≤ cd(x, y).

(b) Let Dτ :=
∩

h∈Gτ
h−1(Ĉ \ ∪m

j=1Uj). Then ♯Dτ < ∞.

(c) For each minimal set L of τ with L ⊂ Dτ , there exist a z ∈ L and

an α ∈ Gτ such that α(z) = z and |α′(z)| > 1.

Here, a non-empty compact subset L of Ĉ is said to be a

minimal set of τ if for each z ∈ L, ∪h∈Gτ
{h(z)} = L.
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(7) For each τ ∈ M1,c(Rat), we define M∗
τ : M1(Ĉ) → M1(Ĉ) as follows.

M∗
τ (µ)(A) :=

∫
µ(h−1(A)) dτ(h)

for each µ ∈ M1(Ĉ) and for each Borel subset A of Ĉ.

Theorem 2 ([4]). Let τ ∈ M1,c(Rat) be weakly mean stable.

Then there exists an l ∈ N such that for each x ∈ Ĉ, there exists an

(M∗
τ )

l-invariant µx ∈ M1(Ĉ) such that

(M∗
τ )

nl(δx) → µx as n → ∞

in M1(Ĉ) with respect to the weak convergence topology.

Here, δx denotes the Dirac measure at x.
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Theorem 3 ([4]). Let τ ∈ M1,c(Rat) be weakly mean stable. Let

J(Gτ ) := {z ∈ Ĉ | for any nbd U of z in Ĉ, Gτ is not equicontinuous on U}.

Suppose we have the following (1) and (2).

(1) ♯J(Gτ ) ≥ 3. (Note: if ∃g ∈ supp τ with deg(g) ≥ 2, then

♯J(Gτ ) ≥ 3.)

(2) For each minimal set L of τ with L ⊂ Dτ , where Dτ is the set coming

from Definition 1 (6), we have the following (a)(b).

(a) The Lyapunov exponent χ(L, τ) of (L, τ) is not zero.

(b) If χ(L, τ) > 0, then for each z ∈ L and for each h ∈ supp τ , we

have Dhz ̸= 0.
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Then, there exist a subset Ωτ of Ĉ with ♯(Ĉ \ Ωτ ) ≤ ℵ0

and a constant cτ with cτ < 0 such that the following holds.

• For each z ∈ Ωτ , there exists a Borel subset Bτ,z of (Rat)N with

(⊗∞
n=1τ)(Bτ,z) = 1 such that for each (γ1, γ2 . . . , ) ∈ Bτ,z, we have

lim sup
n→∞

1

n
log ∥D(γn ◦ · · · γ1)z∥ ≤ cτ < 0.

Remark 4. Statements of Theorems 2 and 3 cannot hold for

deterministic dynamics of a single f ∈ Rat with deg(f) ≥ 2.

In fact, in the Julia set J(f) of f , we have a chaotic phenomenon.

See Mañé’s paper (1988)[1] etc.
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Theorem 5 ([4]). Let Y be one of the following (1)–(4).

(1) {f ∈ Rat | f is a polynomial with deg(f) ≥ 2}.

(2) {λz(1− z) ∈ Rat | λ ∈ C \ {0}}.

(3) {z − λ f(z)
f ′(z) ∈ Rat | λ ∈ C, |λ− 1| < 1} where f is a polynomial with

deg(f) ≥ 2. Note that this family is related to “random relaxed

Newton’s methods for f” in which we can find roots of any polynomial

f more easily than deterministic Newton’s method ([4]).

(4) {z + λf(z) ∈ Rat | λ ∈ C \ {0}} where f is a polynomial with

deg(f) ≥ 2 such that for each z0 ∈ C with f(z0) = 0, we have

f ′(z0) ̸= 0.

Then there exists an open and dense subset A of M1,c(Y ) such that

each τ ∈ A is weakly mean stable and satisfies the assumptions of

Theorems 2 and 3 (thus the statements of Theorems 2 and 3 hold for τ).
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Here, we endow M1,c(Y ) with the topology such that a sequence

{τn}n∈N in M1,c(Y ) tends to an element τ ∈ M1,c(Y ) if and only if

(a) for each bounded continuous function φ : Y → R, we have∫
Y
φdτn →

∫
Y
φdτ as n → ∞, and

(b) supp τn → supp τ as n → ∞ with respect to the Hausdorff metric

in the space of all non-empty compact subsets of Y.
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Theorem 6 ([4]). (Random relaxed Newton’s methods)

Let f be a polynomial with deg(f) ≥ 2.

Let 1/2 < r < 1. Let τ be the normalized Lebesgue measure on

Y0 = {z − λ
f(z)

f ′(z)
∈ Rat | λ ∈ C, |λ− 1| ≤ r} ∼= {λ ∈ C | |λ− 1| ≤ r}.

Then τ is weakly mean stable and satisfies the assumptions of

Theorems 2 and 3.

Also, for each z0 ∈ C \ {z ∈ C | f ′(z) = 0},
there exists a Borel subset Bz0 of (Y0)

N with (⊗∞
n=1τ)(Bz0) = 1

satisfying the following.

• For each γ = (γ1, γ2, . . .) ∈ Bz0 ,

there exists a x = x(z0, γ) with f(x) = 0 such that

γn ◦ · · · ◦ γ1(z0) → x as n → ∞ exponentially fast.

Remark 7. The statement of Theorem 6 cannot hold for deterministic

Newton’s method.
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Idea of Proofs of Theorems 2,3.

(1) Let τ ∈ M1,c(Rat) be weakly mean stable and

let {Uj}j , Dτ =
∩

h∈Gτ
h−1(Ĉ \ ∪jUj) be as in the definition of weak

mean stability.

(2) In each Uj , all maps of the system are uniformly contracting and

we have very nice situations in ∪jUj , e.g. There are only finitely many

minimal sets of τ which meet ∪jUj and they are “attracting”.

(3) For each y ∈ Ĉ, let
Ay,1 :=

{γ = (γ1, γ2, . . . , ) ∈ (supp τ)N | ∃n ∈ N s.t.γn ◦ · · · ◦ γ1(y) ∈ ∪jUj}
and let Ay,2 := (supp τ)N \Ay,1.

For elements in Ay,1, we have nice things (see (2)).

Regarding Ay,2, we show that for (⊗∞
n=1τ)-a.e. (γ1, γ2, . . . , ) ∈ Ay,2,

we have d(γn ◦ · · · ◦ γ1(y), Dτ ) → 0 as n → ∞.
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Idea of Proofs of Theorems 5,6.

(1) We use complex analysis, Montel’s theorem (a family of uniformly

bounded holomorphic functions on a domain is equicontinuous on the

domain), hyperbolic metric.　

(2) We classify minimal sets and analyse the bifurcation of minimal sets.

etc. By using these, enlarging the support of the original τ a little bit,

we destroy non-attracting minimal sets which do not meet Dτ .

(3) Regarding the proof Theorem 6, by using some technical argument,

we destroy any minimal set which contains an attracting periodic cycle

of Nf (z) = z − f(z)/f ′(z) with period ≥ 2.
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Summary

(1) We introduce the notion of weak mean stability in i.i.d. random

(holomorphic) 1-dimensional dynamical systems.

(2) If a random holomorphic dynamical system on Ĉ is weakly mean

stable, then for any x ∈ Ĉ, the orbit of the Dirac measure at x under

the iterations of the dual map of the transition operator converges to a

periodic cycle of probability measures.

(3) If a random holomorphic dynamical system on Ĉ is weakly mean stable

and satisfies some mild assumtions, then for all but countably many

z ∈ Ĉ, for a.e. orbit starting with z, the Lyapunov exponent is

negative. Note that the statements of (2) and (3) cannot hold for

deterministic dynamics of a single rational map f with deg(f) ≥ 2.

(4) In many holomorphic families of rational maps (including random

relaxed Newton’s methods family), generic random dynamical systems

satisfy the statements of (2) and (3). We can apply this to random

relaxed Newton’s method to find a root of any polynomial.
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Fig. 1 (A devil's coliseum)

This is the graph of the function of the probability of tending to infinity 
regarding the randon dynamical system such that at every step we choose 
one of polynomials $f,g$ of degree 4 with probabilites 1/2 and 1/2. 
This function is continuous on the Riemann sphere and varies precisely on 
a thin fractal set (Julia set of the semigroup generated by $f,g$) in Fig. 2. 
A devil's coliseum (a complex analogue of the devil's staircase). 
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The Julia set of the semigroup generated by the polynomials $f$ and $g$ in Fig.1. The Hausdorff dimension of the Julia set is strictily less than 2. In particular, the 2-dim Lebesgue measure is equal to zero. The function in Fig. 1 is continuous on the Riemann sphere and veries precisely on this Julia set. 
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Fig. 3.  Upside down figure of Fig. 1. This is equal to the graph of 
the function of probability of tending to the origin. This function is 
continuous on the Riemann sphere and varies precisely on the 
thin fractal set in Fig. 2. A `` fractal wedding cake'' ([2]). 
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