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Introduction

I We consider the quadratic family

fc(z) = z2 + c

I We define as usual

Kc = {z ∈ C; (f nc (z))n∈N is bounded},

Jc = ∂Kc .

I We define d(c) = the Hausdorff dimension of Jc .

I We wish to study the variations of the function
c 7→ d(c), c ∈ R.
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Known results

I (Ruelle): d is real-analytic in each hyperbolic component.

I (Bodart, Z.) d is continuous from the left at 1/4

I (Douady, Sentenac, Z.) d is discontinuous from the right at
1/4.

I (McMullen) d is continuous at any real parabolic point with
two petals (but discontinuous along the vertical direction).

I This implies that d is continuous on ]cFeigenbaum, 1/4[.
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Derivative of d

I (Havard-Zinsmeister) With the information that d(1/4) > 1
and d(1/4) < 3/2, we get, for c close to 1/4, c < 1/4

1

K
≤ d ′(c)

(1/4− c)d(1/4)−3/2
≤ K

for some K > 1.

I (Jaksztas) With the information that d(−3/4) < 4/3 we get
for c close to −3/4

1

K
≤ −d ′(c)

|c + 3/4|
3
2
d(−3/4)−2

≤ K ,

for some K > 1.
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Derivative of d

Theorem (Jaksztas, Z.): Let c0 be a real parameter which is
parabolic with two petals: then

1. if d(c0) < 4/3,

lim
c→c0±0

d ′(c)

|c − c0|
3
2
d(c0)−2

= −K±,

with K+ > K− > 0.

2. if d(c0) = 4/3 then

lim
c→c0±0

d ′(c)

− log(|c − c0|)
= −K±,

with K+ > K− > 0.

3. if d(c0) > 4/3 then d is C 1 on a neighbourhood of c0.
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Thermodynamic Formalism

I Let (Fλ), λ ∈ Λ a disk ⊂ C be a holomorphic family of
hyperbolic polynomials with same degree d .

I If λ0 ∈ Λ there exists a holomorphic motion ϕλ of Iλ′ such
that ϕλ0 = id and

ϕλ ◦ Fλ0 = Fλ ◦ ϕλ.

I Let X = Iλ′ , T = Fλ0 and consider the potential function

Φ = − log |F ′λ(ϕλ)|.

I The topological pressure is defined as

P(T ,Φ) = lim
n→∞

1

n
log

∑
y∈T−n(x)

exp SnΦ(y),

where SnΦ =
∑n−1

k=0 Φ ◦ T k .
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Thermodynamic Formalism

I The function t 7→ P(T , tΦ) is convex decreasing from +∞ to
−∞, so it vanishes once and only once.

I Theorem (Bowen): The unique zero of this function is the
Hausdorff dimension of Iλ.

I Ruelle operator:

LΦ(u)(x) =
∑

y∈T−1(x)

exp Φ(y)u(y).

I Perron-Frobenius-Ruelle theorem: β = expP(T ,Φ) is a
simple eigenvalue associated to an eigenvector hΦ > 0.
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Thermodynamic Formalism

I There exists a unique probability measure ωΦ such that
L∗(ωΦ) = βωΦ.

I If β = 1, i.e. if t is the dimension then

µΦ = hΦωΦ

is a T-invariant measure.

I Parry-Pollicott:

d

dt
(P(T ,Ψ + tΦ)) =

∫
X ΦdµΨ+tΦ

µΨ+tΦ(X )
.

I Let Φλ = −d(λ) log |F ′λ(ϕλ)|.
I Havard, Z.:

d ′(λ) = − d(λ)∫
X log |F ′λ(ϕλ)|dµΦλ

∫
X

d

dλ
log |F ′λ(ϕλ)|dµΦλ

.
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The bifurcation: two petals case
I Let fc0 have a parabolic cycle of length k. Let α(c0) be an

element of this cycle.
I (f kc0

)′(α(c0)) = ±1 and −1 corresponds to two petals.
I Since (f kc0

)′(α(c0)) 6= 1 there exists a nbhd U of c0 and a
holomorphic function α on U so that for c ∈ U, α(c) is an
element of a k-cycle.

I c0 lies between two hyperbolic components of the Mandelbrot
set, Wl , Wr and we may assume that Wl ∪Wr ⊂ U. Then
α(c) is attracting if c ∈Wr and repelling if c ∈Wl .

I Now we change parameter from c to λ = (f kc )′(α(c)). We get
Fλ(z) = λz + az2 + bz3 and we get

F 2
−1(z) = z − 2(a2 + b)z3 + ..

I Because the critical orbits of Fλ are eventually real a2 + b is
positive and we call scaling factor the quantity A =

√
a2 + b

(which is equal to 1 for c0 = −3/4).
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The bifurcation: two petals case

I For λ close to −1 but different therre exists a two-cycle
(p+
λ , p

−
λ ) which tends to 0 as λ tends to −1.

I We define δλ = 1 + λ: then

p±λ = ±
√
−δλ
A

+ O(δλ).
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”Fatou” coordinates

I Conjugating Fλ by the right Möbius map we may assume that

±
√
−δλ
A are the fixed points of F 2

λ .

I We then define the ”Fatou” coordinates as

Zλ =
1

2λ
log (1− δλ

A2z2
).

I These maps conjugate F 2
λ to a map close to a translation by 2

near p±λ .

I notice that z = Z−1
λ (Z ) = 1

A( δλ
1−e2δλZ )1/2.
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±
√
−δλ
A are the fixed points of F 2

λ .

I We then define the ”Fatou” coordinates as

Zλ =
1

2λ
log (1− δλ

A2z2
).

I These maps conjugate F 2
λ to a map close to a translation by 2

near p±λ .

I notice that z = Z−1
λ (Z ) = 1

A( δλ
1−e2δλZ )1/2.



”Fatou” coordinates

I Conjugating Fλ by the right Möbius map we may assume that
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Cylinders

There exist K ,K1,K2 > 0 and η > 0 such that for every n ≥ 1 and
|δλ| < η we have

K1|δλ|e−Kn|δλ| ≤ |Cn(λ)| ≤ K2n
−3/2.



Invariant measure

I We consider the induced map F ∗ = F k on |Ck |.
I This induced dynamics is hyperbolic and thus there is an

F ∗-invariant measure µ∗ which is absolutely continuous wrt
the conformal (=Hausdorff) measure with Radon-Nykodim
derivative bounded and away from 0.

I We may then write

µλ(Cn) =
∞∑
k=n

µ∗λ(Cn) ∼
∞∑
k=n

ωλ(Cn)



Invariant measure

I We consider the induced map F ∗ = F k on |Ck |.
I This induced dynamics is hyperbolic and thus there is an

F ∗-invariant measure µ∗ which is absolutely continuous wrt
the conformal (=Hausdorff) measure with Radon-Nykodim
derivative bounded and away from 0.

I We may then write

µλ(Cn) =
∞∑
k=n

µ∗λ(Cn) ∼
∞∑
k=n

ωλ(Cn)



Invariant measure

I We consider the induced map F ∗ = F k on |Ck |.
I This induced dynamics is hyperbolic and thus there is an

F ∗-invariant measure µ∗ which is absolutely continuous wrt
the conformal (=Hausdorff) measure with Radon-Nykodim
derivative bounded and away from 0.

I We may then write

µλ(Cn) =
∞∑
k=n

µ∗λ(Cn) ∼
∞∑
k=n

ωλ(Cn)



Invariant measure

I For h ≥ 1 and u 6= 0 let us define

Λh
0(u) =

(
e−2u

|1− e−2u|3/2

)h

.

I We have the following estimates:

(δλ > 0) :
µλ(Cn)

δ
3d(λ)/2−1
λ
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Estimate of the λ-derivative

I We return to the formula giving the derivative of the
dimension: we need to estimate
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I It happens that the ”principal part” of ϕ̇ can be written as

ψλ(z) = −
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Estimate of the λ-derivative

I We define βλ(z) = Imz · ψ̇λ(z).

I It can be shown that

Re(
∂
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F ′λ(ϕλ))
∼ 6A2βλ(ϕλ)− 1.

I Moreover βλ(z) ∼ Γ(nδλ)
A2 , z ∈ Cn(λ), where

Γ(x) =
e2x − 1− 2x

2(e2x − 1)2
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End of the proof

I we define Gh
+(s) = M

∫ +∞
s Λh

0(u)du, s ≥ 0,
Gh
−(s) = M

∫ s
−∞ Λh

0(u)du, s ≤ 0.

I For h ∈ [1, 4/3) we define

Θ+(h) =

∫ +∞

0
(6Γ(s)− 1)Gh

+(s)ds,

Θ−(h) =

∫ s

−∞
(6Γ(s)− 1)Gh

−(s)ds.

I

|δλ|−3d(λ)/2+2(

∫
log |F ′λ|dµλ)d ′(λ) ∼ Θ±(d(−1)),

where the chosen sign is the one of δλ.
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End of the proof

I Θ±(1) = 0, Θ±(h) > 0 if h ∈ (1, 4/3), Θ±(4/3) = +∞.

I Θ− ≤ Θ+ on [1, 4/3)
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