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We define d(c) = the Hausdorff dimension of J..

We wish to study the variations of the function
c—d(c), ceR.
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This implies that d is continuous on ]crejgenbaum- 1/4[.
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Theorem (Jaksztas, Z.): Let ¢y be a real parameter which is
parabolic with two petals: then

1. if d(co) < 4/3,

( )

lim —m—————— = —K4
c—co0 |C _ C0| d (c0)—2 ’

with Ky > K_ > 0.
2. if d(cp) = 4/3 then
d'(c)

— 7 - K
c—>lg]i0 — Iog(\c - Co‘) =

with K. > K_ > 0.
3. if d(cp) > 4/3 then d is C! on a neighbourhood of ¢.
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that ¢,, = id and

pro Fy, = Fyopx.

» Let X =7,,, T = F), and consider the potential function

® = —log |Fy ()|

» The topological pressure is defined as

1
P(T,®) = nli_)ngO;Iog Z exp Sp®(y),
yeT—"(x)

where 5,0 = Y 1_id o T,
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Thermodynamic Formalism

» The function t — P(T,t®) is convex decreasing from +oco to
—00, so it vanishes once and only once.

» Theorem (Bowen): The unique zero of this function is the
Hausdorff dimension of Zj.

» Ruelle operator:

Lo(u)(x)= Y exp®(y)u(y).

yeT—H(x)

» Perron-Frobenius-Ruelle theorem: 3 =exp P(T,®) is a
simple eigenvalue associated to an eigenvector he > 0.
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Thermodynamic Formalism

>

There exists a unique probability measure wg such that
L*(we) = Pwe.
If 3 =1, i.e. if tis the dimension then

Ho = howe

is a T-invariant measure.

Parry-Pollicott:

fx ¢dﬂw+t¢
—(P(T,V + td SR e
( ( )= pow o (X)
Let @\ = —d()) log |F}(¢a)l-
Havard, Z.:

d(\)

d(\) = —
N N OO

d
| 25 1B R (o) dio,
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» Let f,, have a parabolic cycle of length k. Let a(cp) be an
element of this cycle.

> (f£)(a(co)) = +1 and —1 corresponds to two petals.

> Since (fX)(a(co)) # 1 there exists a nbhd U of ¢o and a
holomorphic function « on U so that for ¢ € U, a(c) is an
element of a k-cycle.

> ¢p lies between two hyperbolic components of the Mandelbrot
set, W;, W, and we may assume that W, U W, C U. Then
a(c) is attracting if ¢ € W, and repelling if c € W,.

» Now we change parameter from c to A = (fX)'(a(c)). We get
Fy(z) = Az + az? + bz3 and we get

F2,(z2) =z —2(a* + b)Z> + ..

» Because the critical orbits of Fy are eventually real a®> + b is
positive and we call scaling factor the quantity A = va%2 + b
(which is equal to 1 for cg = —3/4).
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The bifurcation: two petals case

» For A close to —1 but different therre exists a two-cycle
(p:\F7 py ) which tends to 0 as A tends to —1.

» We define 6, = 1 + A: then

V—=0x

Py =+

+ O(0y).
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"Fatou” coordinates

» Conjugating F) by the right Mobius map we may assume that
:l:—v;fSA are the fixed points of Ff.
» We then define the "Fatou” coordinates as

1 Oz

> These maps conjugate F)% to a map close to a translation by 2
near p)\i.

> notice that z = Z)\_I(Z) = %(ligéﬁz)l/?_
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Cylinders

There exist K, K1, K > 0 and 1 > 0 such that for every n > 1 and
|0x] < 1 we have

Ki|0xle K < |G (A)| < Kan™3/2.
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Invariant measure

» We consider the induced map F* = Fk on |Cy|.

» This induced dynamics is hyperbolic and thus there is an
F*-invariant measure p* which is absolutely continuous wrt
the conformal (=Hausdorff) measure with Radon-Nykodim
derivative bounded and away from 0.

» We may then write

px(Cn) = ZMK(Cn) ~ Zwk(cn)
k=n k=n
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Invariant measure

» For h>1 and u # 0 let us define
—2u h

he N e
0= (=)

» We have the following estimates:

C AdO
)\ A

(51 <0): 5 ol /\/l/ ALV du,
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Estimate of the \-derivative

» We return to the formula giving the derivative of the
dimension: we need to estimate

aa/\(F (er)) = (aaAF A (92) + orFL (o).

Y Gacy)
. Z F/(e2)

> It happens that the "principal part” of ¢ can be written as

n j—1 Z
¢)\(Z) = _ZL()7

j=1 F(2)

for z = @x(s) € Ca(N).
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Estimate of the \-derivative

> We define B(z) = Imz - ¢(z).
» It can be shown that

a(Faler)

R R o)

» Moreover (x(z) ~ r(;"g*), z € Cy(N), where

2x
eX —1—-2x 5,

)= S

~ 6A25)\(g0)\) — 1.



End of the proof

> we define Gf(s) = M ["°° Aj(u)du, s >0,
GM'(s) =M [°__Nj(u)du, s <O0.



End of the proof

> we define Gf(s) = M ["°° Aj(u)du, s >0,
GM'(s) =M [°__Nj(u)du, s <O0.
» For h € [1,4/3) we define
+o0
0., (h) = / (6T (s) — 1)G"(s)ds,
0

@(h):/_s (6T (s) — 1)G" (s)ds.



End of the proof

> we define Gf(s) = M ["°° Aj(u)du, s >0,
Gh(s)=M [°_A(u)du, s <O.
» For h € [1,4/3) we define

+o0o
O = [ (6r(s) - 1)G2(5)ds

@(h):/s (6T (s) — 1)G" (s)ds.

—00

163 390/2+2( / log | F}|dpix)d'(\) ~ ©(d(~1)),

where the chosen sign is the one of J).
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End of the proof

> ©.(1) =0, O, (h) > 0if he (1,4/3), Ox(4/3) = +oo0.
> ©_ <O, on[l,4/3)
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(Thanks to Carine Lucas and Thomas Haberkorn)



