Variations of Hausdorff dimension of quadratic Julia sets

Ludwik Jaksztas, Michel Zinsmeister

Kyoto, december 15, 2017

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We consider the quadratic family

$$f_c(z) = z^2 + c$$

We define as usual

$$K_c = \{ z \in \mathbb{C}; \ (f_c^n(z))_{n \in \mathbb{N}} \text{ is bounded} \},$$
$$J_c = \partial K_c.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We define d(c) = the Hausdorff dimension of J_c.
 We wish to study the variations of the function c → d(c), c ∈ ℝ.

We consider the quadratic family

$$f_c(z) = z^2 + c$$

$$K_{c} = \{ z \in \mathbb{C}; (f_{c}^{n}(z))_{n \in \mathbb{N}} \text{ is bounded} \},$$
$$J_{c} = \partial K_{c}.$$

We define d(c) = the Hausdorff dimension of J_c
 We wish to study the variations of the function c → d(c), c ∈ ℝ.

We consider the quadratic family

$$f_c(z) = z^2 + c$$

We define as usual

$$\mathcal{K}_{c} = \{z \in \mathbb{C}; (f_{c}^{n}(z))_{n \in \mathbb{N}} \text{ is bounded}\},$$

 $J_{c} = \partial \mathcal{K}_{c}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• We define d(c) = the Hausdorff dimension of J_c .

We wish to study the variations of the function c → d(c), c ∈ ℝ.

We consider the quadratic family

$$f_c(z) = z^2 + c$$

We define as usual

$$K_{c} = \{ z \in \mathbb{C}; (f_{c}^{n}(z))_{n \in \mathbb{N}} \text{ is bounded} \},$$
$$J_{c} = \partial K_{c}.$$

- We define d(c) = the Hausdorff dimension of J_c .
- We wish to study the variations of the function c → d(c), c ∈ ℝ.

• (Ruelle): *d* is real-analytic in each hyperbolic component.

- ▶ (Bodart, Z.) *d* is continuous from the left at 1/4
- ► (Douady, Sentenac, Z.) d is discontinuous from the right at 1/4.
- (McMullen) d is continuous at any real parabolic point with two petals (but discontinuous along the vertical direction).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

► This implies that *d* is continuous on]*c_{Feigenbaum}*, 1/4[.

- ▶ (Ruelle): *d* is real-analytic in each hyperbolic component.
- ▶ (Bodart, Z.) *d* is continuous from the left at 1/4
- ▶ (Douady, Sentenac, Z.) *d* is discontinuous from the right at 1/4.
- (McMullen) d is continuous at any real parabolic point with two petals (but discontinuous along the vertical direction).

► This implies that *d* is continuous on]*c_{Feigenbaum}*, 1/4[.

- (Ruelle): d is real-analytic in each hyperbolic component.
- (Bodart, Z.) d is continuous from the left at 1/4
- ► (Douady, Sentenac, Z.) *d* is discontinuous from the right at 1/4.
- (McMullen) d is continuous at any real parabolic point with two petals (but discontinuous along the vertical direction).

▶ This implies that *d* is continuous on]*c*_{Feigenbaum}, 1/4[.

- (Ruelle): d is real-analytic in each hyperbolic component.
- (Bodart, Z.) d is continuous from the left at 1/4
- ► (Douady, Sentenac, Z.) d is discontinuous from the right at 1/4.
- (McMullen) d is continuous at any real parabolic point with two petals (but discontinuous along the vertical direction).

• This implies that d is continuous on $]c_{Feigenbaum}, 1/4[.$

- (Ruelle): d is real-analytic in each hyperbolic component.
- (Bodart, Z.) d is continuous from the left at 1/4
- ► (Douady, Sentenac, Z.) d is discontinuous from the right at 1/4.
- (McMullen) d is continuous at any real parabolic point with two petals (but discontinuous along the vertical direction).

• This implies that d is continuous on $]c_{Feigenbaum}, 1/4[$.

▲ロト ▲母 ト ▲目 ト ▲目 ト ● ○ ○ ○ ○ ○

▲ロト ▲母 ト ▲目 ト ▲目 ト ● ○ ○ ○ ○ ○

► (Havard-Zinsmeister) With the information that d(1/4) > 1 and d(1/4) < 3/2, we get, for c close to 1/4, c < 1/4</p>

$$\frac{1}{K} \leq \frac{d'(c)}{(1/4 - c)^{d(1/4) - 3/2}} \leq K$$

for some K > 1.

► (Jaksztas) With the information that d(-3/4) < 4/3 we get for c close to -3/4

$$\frac{1}{K} \le \frac{-d'(c)}{|c+3/4|^{\frac{3}{2}d(-3/4)-2}} \le K,$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

for some K > 1.

► (Havard-Zinsmeister) With the information that d(1/4) > 1 and d(1/4) < 3/2, we get, for c close to 1/4, c < 1/4</p>

$$\frac{1}{K} \leq \frac{d'(c)}{(1/4 - c)^{d(1/4) - 3/2}} \leq K$$

for some K > 1.

► (Jaksztas) With the information that d(-3/4) < 4/3 we get for c close to -3/4

$$\frac{1}{K} \leq \frac{-d'(c)}{|c+3/4|^{\frac{3}{2}d(-3/4)-2}} \leq K,$$

for some K > 1.

Theorem (Jaksztas, Z.): Let c_0 be a real parameter which is parabolic with two petals: then

1. if $d(c_0) < 4/3$,

$$\lim_{c \to c_0 \pm 0} \frac{d'(c)}{|c - c_0|^{\frac{3}{2}d(c_0)-2}} = -K_{\pm},$$

with $K_+ > K_- > 0$. 2. if $d(c_0) = 4/3$ then

$$\lim_{c \to c_0 \pm 0} \frac{d'(c)}{-\log(|c - c_0|)} = -K_{\pm},$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

with $K_+ > K_- > 0$. 3. if $d(c_0) > 4/3$ then d is C^1 on a neighbourhood of

Theorem (Jaksztas, Z.): Let c_0 be a real parameter which is parabolic with two petals: then

1. if $d(c_0) < 4/3$,

$$\lim_{c \to c_0 \pm 0} \frac{d'(c)}{|c - c_0|^{\frac{3}{2}d(c_0)-2}} = -K_{\pm},$$

with $K_{+} > K_{-} > 0$.

2. if
$$d(c_0) = 4/3$$
 then

$$\lim_{c \to c_0 \pm 0} \frac{d'(c)}{-\log(|c-c_0|)} = -\mathcal{K}_{\pm},$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

with $K_{+} > K_{-} > 0$.

3. if $d(c_0) > 4/3$ then d is C^1 on a neighbourhood of c_0 .

Theorem (Jaksztas, Z.): Let c_0 be a real parameter which is parabolic with two petals: then

1. if $d(c_0) < 4/3$,

$$\lim_{c \to c_0 \pm 0} \frac{d'(c)}{|c - c_0|^{\frac{3}{2}d(c_0)-2}} = -K_{\pm},$$

with $K_{+} > K_{-} > 0$.

2. if
$$d(c_0) = 4/3$$
 then

$$\lim_{c\to c_0\pm 0}\frac{d'(c)}{-\log(|c-c_0|)}=-K_{\pm},$$

with $K_+ > K_- > 0$. 3. if $d(c_0) > 4/3$ then d is C^1 on a neighbourhood of c_0 .

- Let (F_λ), λ ∈ Λ a disk ⊂ C be a holomorphic family of hyperbolic polynomials with same degree d.
- If λ₀ ∈ Λ there exists a holomorphic motion φ_λ of I_λ, such that φ_{λ0} = id and

$$\varphi_{\lambda} \circ F_{\lambda_0} = F_{\lambda} \circ \varphi_{\lambda}.$$

► Let $X = \mathcal{I}_{\lambda_{\ell}}, \ T = F_{\lambda_0}$ and consider the potential function $\Phi = -\log |F'_{\lambda}(\varphi_{\lambda})|.$

The topological pressure is defined as

$$P(T, \Phi) = \lim_{n \to \infty} \frac{1}{n} \log \sum_{y \in T^{-n}(x)} \exp S_n \Phi(y),$$

where
$$S_n \Phi = \sum_{k=0}^{n-1} \Phi \circ T^k$$
.

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ─ ≧ − のへで

- Let (F_λ), λ ∈ Λ a disk ⊂ C be a holomorphic family of hyperbolic polynomials with same degree d.
- If λ₀ ∈ Λ there exists a holomorphic motion φ_λ of I_λ, such that φ_{λ0} = id and

$$\varphi_{\lambda} \circ F_{\lambda_0} = F_{\lambda} \circ \varphi_{\lambda}.$$

▶ Let $X = \mathcal{I}_{\lambda_{\ell}}, \ T = F_{\lambda_0}$ and consider the potential function $\Phi = -\log |F'_{\lambda}(\varphi_{\lambda})|.$

The topological pressure is defined as

$$P(T, \Phi) = \lim_{n \to \infty} \frac{1}{n} \log \sum_{y \in T^{-n}(x)} \exp S_n \Phi(y),$$

where
$$S_n \Phi = \sum_{k=0}^{n-1} \Phi \circ T^k$$
.

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ─ 差 ─ のへぐ

- Let (F_λ), λ ∈ Λ a disk ⊂ C be a holomorphic family of hyperbolic polynomials with same degree d.
- If λ₀ ∈ Λ there exists a holomorphic motion φ_λ of I_λ, such that φ_{λ0} = id and

$$\varphi_{\lambda} \circ F_{\lambda_0} = F_{\lambda} \circ \varphi_{\lambda}.$$

Let X = I_{λ_i}, T = F_{λ₀} and consider the potential function $Φ = -\log |F'_λ(φ_λ)|.$

The topological pressure is defined as

$$P(T, \Phi) = \lim_{n \to \infty} \frac{1}{n} \log \sum_{y \in T^{-n}(x)} \exp S_n \Phi(y),$$

where
$$S_n \Phi = \sum_{k=0}^{n-1} \Phi \circ T^k$$
.

- Let (F_λ), λ ∈ Λ a disk ⊂ C be a holomorphic family of hyperbolic polynomials with same degree d.
- If λ₀ ∈ Λ there exists a holomorphic motion φ_λ of I_λ, such that φ_{λ0} = id and

$$\varphi_{\lambda} \circ F_{\lambda_0} = F_{\lambda} \circ \varphi_{\lambda}.$$

► Let $X = \mathcal{I}_{\lambda_{\ell}}, \ T = F_{\lambda_0}$ and consider the potential function $\Phi = -\log |F'_{\lambda}(\varphi_{\lambda})|.$

The topological pressure is defined as

$$P(T, \Phi) = \lim_{n \to \infty} \frac{1}{n} \log \sum_{y \in T^{-n}(x)} \exp S_n \Phi(y),$$

where $S_n \Phi = \sum_{k=0}^{n-1} \Phi \circ T^k$.

・ロ・・部・・ヨ・・ヨ・ シック

The function t → P(T, tΦ) is convex decreasing from +∞ to -∞, so it vanishes once and only once.

- Theorem (Bowen): The unique zero of this function is the Hausdorff dimension of *I*_λ.
- Ruelle operator:

$$\mathcal{L}_{\Phi}(u)(x) = \sum_{y \in \mathcal{T}^{-1}(x)} \exp \Phi(y) u(y).$$

- The function t → P(T, tΦ) is convex decreasing from +∞ to -∞, so it vanishes once and only once.
- Theorem (Bowen): The unique zero of this function is the Hausdorff dimension of *I*_λ.

Ruelle operator:

$$\mathcal{L}_{\Phi}(u)(x) = \sum_{y \in \mathcal{T}^{-1}(x)} \exp \Phi(y) u(y).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- The function t → P(T, tΦ) is convex decreasing from +∞ to -∞, so it vanishes once and only once.
- Theorem (Bowen): The unique zero of this function is the Hausdorff dimension of *I*_λ.
- Ruelle operator:

$$\mathcal{L}_{\Phi}(u)(x) = \sum_{y \in \mathcal{T}^{-1}(x)} \exp \Phi(y) u(y).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- The function t → P(T, tΦ) is convex decreasing from +∞ to -∞, so it vanishes once and only once.
- Theorem (Bowen): The unique zero of this function is the Hausdorff dimension of *I*_λ.
- Ruelle operator:

$$\mathcal{L}_{\Phi}(u)(x) = \sum_{y \in \mathcal{T}^{-1}(x)} \exp \Phi(y) u(y).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- There exists a unique probability measure ω_Φ such that L^{*}(ω_Φ) = βω_Φ.
- If $\beta = 1$, i.e. if *t* is the dimension then

$$\mu_{\Phi} = h_{\Phi}\omega_{\Phi}$$

is a T-invariant measure.

Parry-Pollicott:

$$\frac{d}{dt}(P(T,\Psi+t\Phi)) = \frac{\int_X \Phi d\mu_{\Psi+t\Phi}}{\mu_{\Psi+t\Phi}(X)}$$

• Let $\Phi_{\lambda} = -d(\lambda) \log |F'_{\lambda}(\varphi_{\lambda})|.$

$$d'(\lambda) = -\frac{d(\lambda)}{\int_X \log |F'_\lambda(\varphi_\lambda)| d\mu_{\Phi_\lambda}} \int_X \frac{d}{d\lambda} \log |F'_\lambda(\varphi_\lambda)| d\mu_{\Phi_\lambda}.$$

- There exists a unique probability measure ω_Φ such that L^{*}(ω_Φ) = βω_Φ.
- If $\beta = 1$, i.e. if t is the dimension then

$$\mu_{\Phi} = h_{\Phi}\omega_{\Phi}$$

is a T-invariant measure.

Parry-Pollicott:

$$\frac{d}{dt}(P(T,\Psi+t\Phi)) = \frac{\int_X \Phi d\mu_{\Psi+t\Phi}}{\mu_{\Psi+t\Phi}(X)}$$

• Let $\Phi_{\lambda} = -d(\lambda) \log |F'_{\lambda}(\varphi_{\lambda})|.$

$$d'(\lambda) = -\frac{d(\lambda)}{\int_X \log |F'_\lambda(\varphi_\lambda)| d\mu_{\Phi_\lambda}} \int_X \frac{d}{d\lambda} \log |F'_\lambda(\varphi_\lambda)| d\mu_{\Phi_\lambda}.$$

- There exists a unique probability measure ω_Φ such that L^{*}(ω_Φ) = βω_Φ.
- If $\beta = 1$, i.e. if t is the dimension then

$$\mu_{\Phi} = h_{\Phi}\omega_{\Phi}$$

is a T-invariant measure.

Parry-Pollicott:

$$\frac{d}{dt}(P(T,\Psi+t\Phi))=\frac{\int_X \Phi d\mu_{\Psi+t\Phi}}{\mu_{\Psi+t\Phi}(X)}$$

• Let $\Phi_{\lambda} = -d(\lambda) \log |F'_{\lambda}(\varphi_{\lambda})|.$

$$d'(\lambda) = -\frac{d(\lambda)}{\int_X \log |F'_\lambda(\varphi_\lambda)| d\mu_{\Phi_\lambda}} \int_X \frac{d}{d\lambda} \log |F'_\lambda(\varphi_\lambda)| d\mu_{\Phi_\lambda}.$$

- There exists a unique probability measure ω_Φ such that L^{*}(ω_Φ) = βω_Φ.
- If $\beta = 1$, i.e. if t is the dimension then

$$\mu_{\Phi} = h_{\Phi}\omega_{\Phi}$$

is a T-invariant measure.

Parry-Pollicott:

$$\frac{d}{dt}(P(T,\Psi+t\Phi))=\frac{\int_X \Phi d\mu_{\Psi+t\Phi}}{\mu_{\Psi+t\Phi}(X)}$$

• Let $\Phi_{\lambda} = -d(\lambda) \log |F'_{\lambda}(\varphi_{\lambda})|.$

$$d'(\lambda) = -\frac{d(\lambda)}{\int_X \log |F'_\lambda(\varphi_\lambda)| d\mu_{\Phi_\lambda}} \int_X \frac{d}{d\lambda} \log |F'_\lambda(\varphi_\lambda)| d\mu_{\Phi_\lambda}.$$

- There exists a unique probability measure ω_Φ such that L^{*}(ω_Φ) = βω_Φ.
- If $\beta = 1$, i.e. if t is the dimension then

$$\mu_{\Phi} = h_{\Phi}\omega_{\Phi}$$

is a T-invariant measure.

Parry-Pollicott:

$$\frac{d}{dt}(P(T,\Psi+t\Phi))=\frac{\int_X \Phi d\mu_{\Psi+t\Phi}}{\mu_{\Psi+t\Phi}(X)}$$

• Let $\Phi_{\lambda} = -d(\lambda) \log |F'_{\lambda}(\varphi_{\lambda})|.$

$$d'(\lambda) = -\frac{d(\lambda)}{\int_X \log |F'_\lambda(\varphi_\lambda)| d\mu_{\Phi_\lambda}} \int_X \frac{d}{d\lambda} \log |F'_\lambda(\varphi_\lambda)| d\mu_{\Phi_\lambda}.$$

The bifurcation: One petal case

▲□ > ▲圖 > ▲目 > ▲目 > → 目 - のへで

- Let f_{c0} have a parabolic cycle of length k. Let α(c0) be an element of this cycle.
- $(f_{c_0}^k)'(\alpha(c_0)) = \pm 1$ and -1 corresponds to two petals.
- Since (f^k_{c0})'(α(c₀)) ≠ 1 there exists a nbhd U of c₀ and a holomorphic function α on U so that for c ∈ U, α(c) is an element of a k-cycle.
- c_0 lies between two hyperbolic components of the Mandelbrot set, W_l , W_r and we may assume that $W_l \cup W_r \subset U$. Then $\alpha(c)$ is attracting if $c \in W_r$ and repelling if $c \in W_l$.
- ▶ Now we change parameter from *c* to $\lambda = (f_c^k)'(\alpha(c))$. We get $F_{\lambda}(z) = \lambda z + az^2 + bz^3$ and we get

$$F_{-1}^2(z) = z - 2(a^2 + b)z^3 + ...$$

- Let f_{c0} have a parabolic cycle of length k. Let α(c0) be an element of this cycle.
- $(f_{c_0}^k)'(\alpha(c_0)) = \pm 1$ and -1 corresponds to two petals.
- Since (f^k_{c0})'(α(c₀)) ≠ 1 there exists a nbhd U of c₀ and a holomorphic function α on U so that for c ∈ U, α(c) is an element of a k-cycle.
- ▶ c_0 lies between two hyperbolic components of the Mandelbrot set, W_l , W_r and we may assume that $W_l \cup W_r \subset U$. Then $\alpha(c)$ is attracting if $c \in W_r$ and repelling if $c \in W_l$.
- ▶ Now we change parameter from *c* to $\lambda = (f_c^k)'(\alpha(c))$. We get $F_{\lambda}(z) = \lambda z + az^2 + bz^3$ and we get

$$F_{-1}^2(z) = z - 2(a^2 + b)z^3 + ...$$

- Let f_{c0} have a parabolic cycle of length k. Let α(c0) be an element of this cycle.
- $(f_{c_0}^k)'(\alpha(c_0)) = \pm 1$ and -1 corresponds to two petals.
- Since (f^k_{c0})'(α(c₀)) ≠ 1 there exists a nbhd U of c₀ and a holomorphic function α on U so that for c ∈ U, α(c) is an element of a k-cycle.
- ▶ c_0 lies between two hyperbolic components of the Mandelbrot set, W_l , W_r and we may assume that $W_l \cup W_r \subset U$. Then $\alpha(c)$ is attracting if $c \in W_r$ and repelling if $c \in W_l$.
- ▶ Now we change parameter from *c* to $\lambda = (f_c^k)'(\alpha(c))$. We get $F_{\lambda}(z) = \lambda z + az^2 + bz^3$ and we get

$$F_{-1}^2(z) = z - 2(a^2 + b)z^3 + ...$$

- Let f_{c0} have a parabolic cycle of length k. Let α(c0) be an element of this cycle.
- $(f_{c_0}^k)'(\alpha(c_0)) = \pm 1$ and -1 corresponds to two petals.
- Since (f^k_{c0})'(α(c₀)) ≠ 1 there exists a nbhd U of c₀ and a holomorphic function α on U so that for c ∈ U, α(c) is an element of a k-cycle.
- ▶ c_0 lies between two hyperbolic components of the Mandelbrot set, W_l , W_r and we may assume that $W_l \cup W_r \subset U$. Then $\alpha(c)$ is attracting if $c \in W_r$ and repelling if $c \in W_l$.
- ▶ Now we change parameter from *c* to $\lambda = (f_c^k)'(\alpha(c))$. We get $F_{\lambda}(z) = \lambda z + az^2 + bz^3$ and we get

$$F_{-1}^2(z) = z - 2(a^2 + b)z^3 + ...$$

- Let f_{c0} have a parabolic cycle of length k. Let α(c0) be an element of this cycle.
- $(f_{c_0}^k)'(\alpha(c_0)) = \pm 1$ and -1 corresponds to two petals.
- Since (f^k_{c0})'(α(c₀)) ≠ 1 there exists a nbhd U of c₀ and a holomorphic function α on U so that for c ∈ U, α(c) is an element of a k-cycle.
- c_0 lies between two hyperbolic components of the Mandelbrot set, W_l , W_r and we may assume that $W_l \cup W_r \subset U$. Then $\alpha(c)$ is attracting if $c \in W_r$ and repelling if $c \in W_l$.
- ▶ Now we change parameter from *c* to $\lambda = (f_c^k)'(\alpha(c))$. We get $F_{\lambda}(z) = \lambda z + az^2 + bz^3$ and we get

$$F_{-1}^2(z) = z - 2(a^2 + b)z^3 + ..$$

▶ Because the critical orbits of F_{λ} are eventually real $a^2 + b$ is positive and we call scaling factor the quantity $A = \sqrt{a^2 + b}$ (which is equal to 1 for $c_0 = -3/4$).

- Let f_{c0} have a parabolic cycle of length k. Let α(c0) be an element of this cycle.
- $(f_{c_0}^k)'(\alpha(c_0)) = \pm 1$ and -1 corresponds to two petals.
- Since (f^k_{c0})'(α(c₀)) ≠ 1 there exists a nbhd U of c₀ and a holomorphic function α on U so that for c ∈ U, α(c) is an element of a k-cycle.
- c_0 lies between two hyperbolic components of the Mandelbrot set, W_l , W_r and we may assume that $W_l \cup W_r \subset U$. Then $\alpha(c)$ is attracting if $c \in W_r$ and repelling if $c \in W_l$.
- ▶ Now we change parameter from *c* to $\lambda = (f_c^k)'(\alpha(c))$. We get $F_{\lambda}(z) = \lambda z + az^2 + bz^3$ and we get

$$F_{-1}^2(z) = z - 2(a^2 + b)z^3 + ...$$

► Because the critical orbits of F_{λ} are eventually real $a^2 + b$ is positive and we call scaling factor the quantity $A = \sqrt{a^2 + b}$ (which is equal to 1 for $c_0 = -3/4$).

For λ close to -1 but different there exists a two-cycle $(p_{\lambda}^+, p_{\lambda}^-)$ which tends to 0 as λ tends to -1.

• We define $\delta_{\lambda} = 1 + \lambda$: then

$$p_{\lambda}^{\pm} = \pm \frac{\sqrt{-\delta_{\lambda}}}{A} + O(\delta_{\lambda}).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- For λ close to -1 but different there exists a two-cycle $(p_{\lambda}^+, p_{\lambda}^-)$ which tends to 0 as λ tends to -1.
- We define $\delta_{\lambda} = 1 + \lambda$: then

$$p_{\lambda}^{\pm}=\pmrac{\sqrt{-\delta_{\lambda}}}{A}+O(\delta_{\lambda}).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Conjugating F_{λ} by the right Möbius map we may assume that $\pm \frac{\sqrt{-\delta_{\lambda}}}{A}$ are the fixed points of F_{λ}^2 .

We then define the "Fatou" coordinates as

$$Z_{\lambda} = \frac{1}{2\lambda} \log \left(1 - \frac{\delta_{\lambda}}{A^2 z^2}\right).$$

► These maps conjugate F²_λ to a map close to a translation by 2 near p[±]_λ.

- Conjugating F_{λ} by the right Möbius map we may assume that $\pm \frac{\sqrt{-\delta_{\lambda}}}{A}$ are the fixed points of F_{λ}^2 .
- We then define the "Fatou" coordinates as

$$Z_{\lambda} = rac{1}{2\lambda} \log{(1 - rac{\delta_{\lambda}}{A^2 z^2})}.$$

These maps conjugate F²_λ to a map close to a translation by 2 near p[±]_λ.

- Conjugating F_{λ} by the right Möbius map we may assume that $\pm \frac{\sqrt{-\delta_{\lambda}}}{A}$ are the fixed points of F_{λ}^2 .
- We then define the "Fatou" coordinates as

$$Z_{\lambda} = rac{1}{2\lambda} \log{(1 - rac{\delta_{\lambda}}{A^2 z^2})}.$$

These maps conjugate F²_λ to a map close to a translation by 2 near p[±]_λ.

- Conjugating F_{λ} by the right Möbius map we may assume that $\pm \frac{\sqrt{-\delta_{\lambda}}}{A}$ are the fixed points of F_{λ}^2 .
- We then define the "Fatou" coordinates as

$$Z_{\lambda} = rac{1}{2\lambda} \log{(1 - rac{\delta_{\lambda}}{A^2 z^2})}.$$

 These maps conjugate F²_λ to a map close to a translation by 2 near p[±]_λ.

We define a partition of a neighbourhood of the periodic points of *F_λ* which become the parabolic fixed point for *λ* = −1.

We define a partition of a neighbourhood of the periodic points of *F_λ* which become the parabolic fixed point for *λ* = −1.

We define a partition of a neighbourhood of the periodic points of *F_λ* which become the parabolic fixed point for *λ* = −1.

There exist $K, K_1, K_2 > 0$ and $\eta > 0$ such that for every $n \ge 1$ and $|\delta_{\lambda}| < \eta$ we have

$$|K_1|\delta_\lambda|e^{-Kn|\delta_\lambda|} \leq |C_n(\lambda)| \leq K_2 n^{-3/2}.$$

• We consider the induced map $F^* = F^k$ on $|C_k|$.

- This induced dynamics is hyperbolic and thus there is an F*-invariant measure µ* which is absolutely continuous wrt the conformal (=Hausdorff) measure with Radon-Nykodim derivative bounded and away from 0.
- We may then write

$$\mu_{\lambda}(C_n) = \sum_{k=n}^{\infty} \mu_{\lambda}^*(C_n) \sim \sum_{k=n}^{\infty} \omega_{\lambda}(C_n)$$

- We consider the induced map $F^* = F^k$ on $|C_k|$.
- This induced dynamics is hyperbolic and thus there is an F*-invariant measure µ* which is absolutely continuous wrt the conformal (=Hausdorff) measure with Radon-Nykodim derivative bounded and away from 0.
- We may then write

- We consider the induced map $F^* = F^k$ on $|C_k|$.
- This induced dynamics is hyperbolic and thus there is an F*-invariant measure µ* which is absolutely continuous wrt the conformal (=Hausdorff) measure with Radon-Nykodim derivative bounded and away from 0.
- We may then write

$$\mu_{\lambda}(C_n) = \sum_{k=n}^{\infty} \mu_{\lambda}^*(C_n) \sim \sum_{k=n}^{\infty} \omega_{\lambda}(C_n)$$

• For $h \ge 1$ and $u \ne 0$ let us define

$$\Lambda_0^h(u) = \left(\frac{e^{-2u}}{|1-e^{-2u}|^{3/2}}\right)^h.$$

We have the following estimates:

$$(\delta_{\lambda} > 0) : \frac{\mu_{\lambda}(C_{n})}{\delta_{\lambda}^{3d(\lambda)/2-1}} \sim M \int_{n\delta_{\lambda}}^{\infty} \Lambda_{0}^{d(\lambda)} du,$$
$$(\delta_{\lambda} < 0) : \frac{\mu_{\lambda}(C_{n})}{\delta_{\lambda}^{3d(\lambda)/2-1}} \sim M \int_{-\infty}^{n\delta_{\lambda}} \Lambda_{0}^{d(\lambda)} du.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• For $h \ge 1$ and $u \ne 0$ let us define

$$\Lambda_0^h(u) = \left(\frac{e^{-2u}}{|1-e^{-2u}|^{3/2}}\right)^h.$$

We have the following estimates:

$$egin{aligned} & (\delta_{\lambda}>0): rac{\mu_{\lambda}(\mathcal{C}_n)}{\delta_{\lambda}^{3d(\lambda)/2-1}} \sim M \int_{n\delta_{\lambda}}^{\infty} \Lambda_0^{d(\lambda)} du, \ & (\delta_{\lambda}<0): rac{\mu_{\lambda}(\mathcal{C}_n)}{\delta_{\lambda}^{3d(\lambda)/2-1}} \sim M \int_{-\infty}^{n\delta_{\lambda}} \Lambda_0^{d(\lambda)} du. \end{aligned}$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

We return to the formula giving the derivative of the dimension: we need to estimate

$$\frac{\partial}{\partial\lambda}(F_{\lambda}'(\varphi_{\lambda})) = (\frac{\partial}{\partial\lambda}F'\lambda)(\varphi_{\lambda}) + \dot{\varphi}_{\lambda}F_{\lambda}''(\varphi_{\lambda}).$$

$$\dot{arphi}_{\lambda} = -\sum_{j=1}^{\infty} rac{\dot{F}_{\lambda}(F_{\lambda}^{j-1}(arphi_{\lambda}))}{F_{\lambda}^{j}'(arphi_{\lambda})}.$$

It happens that the "principal part" of $\dot{\phi}$ can be written as

$$\psi_{\lambda}(z) = -\sum_{j=1}^{n} \frac{F_{\lambda}^{j-1}(z)}{F_{\lambda}^{j\prime}(z)},$$

for $z = \varphi_{\lambda}(s) \in C_n(\lambda)$.

We return to the formula giving the derivative of the dimension: we need to estimate

$$rac{\partial}{\partial\lambda}(F_\lambda'(arphi_\lambda))=(rac{\partial}{\partial\lambda}F'\lambda)(arphi_\lambda)+\dot{arphi}_\lambda F_\lambda''(arphi_\lambda).$$

$$\dot{\varphi}_{\lambda} = -\sum_{j=1}^{\infty} \frac{\dot{F}_{\lambda}(F_{\lambda}^{j-1}(\varphi_{\lambda}))}{F_{\lambda}^{j}(\varphi_{\lambda})}.$$

It happens that the "principal part" of $\dot{\varphi}$ can be written as

$$\psi_{\lambda}(z) = -\sum_{j=1}^{n} \frac{F_{\lambda}^{j-1}(z)}{F_{\lambda}^{j\prime}(z)},$$

for $z = \varphi_{\lambda}(s) \in C_n(\lambda)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

We return to the formula giving the derivative of the dimension: we need to estimate

$$rac{\partial}{\partial\lambda}(F_{\lambda}'(arphi_{\lambda}))=(rac{\partial}{\partial\lambda}F'\lambda)(arphi_{\lambda})+\dot{arphi}_{\lambda}F_{\lambda}''(arphi_{\lambda}).$$

$$\dot{\varphi}_{\lambda} = -\sum_{j=1}^{\infty} \frac{\dot{F}_{\lambda}(F_{\lambda}^{j-1}(\varphi_{\lambda}))}{F_{\lambda}^{j}(\varphi_{\lambda})}.$$

- It happens that the "principal part" of $\dot{\varphi}$ can be written as

$$\psi_{\lambda}(z) = -\sum_{j=1}^{n} \frac{F_{\lambda}^{j-1}(z)}{F_{\lambda}^{j}(z)},$$

for $z = \varphi_{\lambda}(s) \in C_n(\lambda)$.

• We define
$$\beta_{\lambda}(z) = \text{Im} z \cdot \dot{\psi}_{\lambda}(z)$$
.

It can be shown that

$$\operatorname{Re}(\frac{\frac{\partial}{\partial\lambda}(F_{\lambda}'(\varphi_{\lambda}))}{F_{\lambda}'(\varphi_{\lambda}))} \sim 6A^{2}\beta_{\lambda}(\varphi_{\lambda}) - 1.$$

• Moreover $\beta_{\lambda}(z) \sim \frac{\Gamma(n\delta_{\lambda})}{A^2}, \ z \in C_n(\lambda)$, where

$$\Gamma(x) = \frac{e^{2x} - 1 - 2x}{2(e^{2x} - 1)^2} e^{2x}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

• We define
$$\beta_{\lambda}(z) = \operatorname{Im} z \cdot \dot{\psi}_{\lambda}(z)$$
.

It can be shown that

$$\operatorname{Re}(\frac{\frac{\partial}{\partial\lambda}(F_{\lambda}'(\varphi_{\lambda}))}{F_{\lambda}'(\varphi_{\lambda}))} \sim 6A^{2}\beta_{\lambda}(\varphi_{\lambda}) - 1.$$

• Moreover $\beta_{\lambda}(z) \sim \frac{\Gamma(n\delta_{\lambda})}{A^2}, \ z \in C_n(\lambda)$, where

$$\Gamma(x) = \frac{e^{2x} - 1 - 2x}{2(e^{2x} - 1)^2} e^{2x}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

• We define
$$\beta_{\lambda}(z) = \operatorname{Im} z \cdot \dot{\psi}_{\lambda}(z)$$
.

It can be shown that

$$\mathrm{Re}(rac{\partial}{\partial\lambda}(F_\lambda'(arphi_\lambda))\ - 6A^2eta_\lambda(arphi_\lambda)-1.$$

• Moreover
$$\beta_{\lambda}(z) \sim \frac{\Gamma(n\delta_{\lambda})}{A^2}, \ z \in C_n(\lambda)$$
, where

$$\Gamma(x) = \frac{e^{2x} - 1 - 2x}{2(e^{2x} - 1)^2} e^{2x}.$$

▶ we define
$$G^h_+(s) = M \int_s^{+\infty} \Lambda^h_0(u) du$$
, $s \ge 0$,
 $G^h_-(s) = M \int_{-\infty}^s \Lambda^h_0(u) du$, $s \le 0$.

For $h \in [1, 4/3)$ we define

$$\Theta_+(h) = \int_0^{+\infty} (6\Gamma(s) - 1) G^h_+(s) ds,$$

$$\Theta_{-}(h) = \int_{-\infty}^{s} (6\Gamma(s) - 1) G_{-}^{h}(s) ds.$$

$$|\delta_\lambda|^{-3d(\lambda)/2+2}(\int \log |F_\lambda'| d\mu_\lambda) d'(\lambda) \sim \Theta_\pm(d(-1)),$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

where the chosen sign is the one of δ_{λ} .

▶ we define
$$G^h_+(s) = M \int_s^{+\infty} \Lambda^h_0(u) du$$
, $s \ge 0$,
 $G^h_-(s) = M \int_{-\infty}^s \Lambda^h_0(u) du$, $s \le 0$.

• For $h \in [1, 4/3)$ we define

$$\Theta_+(h) = \int_0^{+\infty} (6\Gamma(s) - 1)G^h_+(s)ds,$$

$$\Theta_{-}(h) = \int_{-\infty}^{1} (6\Gamma(s) - 1)G_{-}^{h}(s)ds.$$

$$|\delta_\lambda|^{-3d(\lambda)/2+2} (\int \log |F_\lambda'| d\mu_\lambda) d'(\lambda) \sim \Theta_\pm(d(-1)),$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

where the chosen sign is the one of δ_{λ} .

▶ we define
$$G^h_+(s) = M \int_s^{+\infty} \Lambda^h_0(u) du$$
, $s \ge 0$,
 $G^h_-(s) = M \int_{-\infty}^s \Lambda^h_0(u) du$, $s \le 0$.

For $h \in [1, 4/3)$ we define

$$\Theta_+(h)=\int_0^{+\infty}(6\Gamma(s)-1)G^h_+(s)ds,$$

$$\Theta_-(h)=\int_{-\infty}^s(6\Gamma(s)-1)G^h_-(s)ds.$$

$$|\delta_\lambda|^{-3d(\lambda)/2+2}(\int \log |\mathcal{F}_\lambda'| d\mu_\lambda) d'(\lambda) \sim \Theta_\pm(d(-1)),$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

where the chosen sign is the one of δ_{λ} .

• $\Theta_{\pm}(1) = 0, \ \Theta_{\pm}(h) > 0 \ \text{if} \ h \in (1, 4/3), \ \Theta_{\pm}(4/3) = +\infty.$ • $\Theta_{-} \le \Theta_{+} \ \text{on} \ [1, 4/3)$

(Thanks to Carine Lucas and Thomas Haberkorn)

・ロト ・ 日 ・ モー・ モー・ ・ 日・ ・ の へ ()・

• $\Theta_{\pm}(1) = 0, \ \Theta_{\pm}(h) > 0 \ \text{if} \ h \in (1, 4/3), \ \Theta_{\pm}(4/3) = +\infty.$ • $\Theta_{-} \le \Theta_{+} \ \text{on} \ [1, 4/3)$

(Thanks to Carine Lucas and Thomas Haberkorn)