Variations of Hausdorff dimension of quadratic Julia sets

Ludwik Jaksztas, Michel Zinsmeister

Kyoto, december 15, 2017

 \triangleright We consider the quadratic family

$$
f_c(z)=z^2+c
$$

 \triangleright We define as usual

$$
K_c = \{ z \in \mathbb{C}; \ (f_c^n(z))_{n \in \mathbb{N}} \text{ is bounded} \},
$$

$$
J_c = \partial K_c.
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

 \blacktriangleright We define $d(c) =$ the Hausdorff dimension of J_c .

 \triangleright We consider the quadratic family

$$
f_c(z)=z^2+c
$$

$$
\blacktriangleright
$$
 We define as usual

$$
K_c = \{ z \in \mathbb{C}; \ (f_c^n(z))_{n \in \mathbb{N}} \text{ is bounded} \},
$$

$$
J_c = \partial K_c.
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

 \blacktriangleright We define $d(c) =$ the Hausdorff dimension of J_c . \triangleright We wish to study the variations of the function

 \triangleright We consider the quadratic family

$$
f_c(z)=z^2+c
$$

 \triangleright We define as usual

$$
K_c = \{ z \in \mathbb{C}; \ (f_c^n(z))_{n \in \mathbb{N}} \text{ is bounded} \},
$$

$$
J_c = \partial K_c.
$$

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

 \blacktriangleright We define $d(c) =$ the Hausdorff dimension of J_c .

 \triangleright We wish to study the variations of the function

 \triangleright We consider the quadratic family

$$
f_c(z)=z^2+c
$$

 \triangleright We define as usual

$$
K_c = \{ z \in \mathbb{C}; \ (f_c^n(z))_{n \in \mathbb{N}} \text{ is bounded} \},
$$

$$
J_c = \partial K_c.
$$

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

- \triangleright We define $d(c) =$ the Hausdorff dimension of J_c .
- \triangleright We wish to study the variations of the function $c \mapsto d(c), c \in \mathbb{R}$.

\blacktriangleright (Ruelle): d is real-analytic in each hyperbolic component.

-
-
-

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

- \blacktriangleright (Ruelle): d is real-analytic in each hyperbolic component.
- (Bodart, Z.) d is continuous from the left at $1/4$
-
- \triangleright (McMullen) d is continuous at any real parabolic point with

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

- \blacktriangleright (Ruelle): d is real-analytic in each hyperbolic component.
- \triangleright (Bodart, Z.) d is continuous from the left at 1/4
- \triangleright (Douady, Sentenac, Z.) d is discontinuous from the right at $1/4.$
- \triangleright (McMullen) d is continuous at any real parabolic point with

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

In This implies that d is continuous on $c_{Feigenbaum}$, $1/4$.

- \blacktriangleright (Ruelle): d is real-analytic in each hyperbolic component.
- \triangleright (Bodart, Z.) d is continuous from the left at 1/4
- \triangleright (Douady, Sentenac, Z.) d is discontinuous from the right at 1/4.
- \triangleright (McMullen) d is continuous at any real parabolic point with two petals (but discontinuous along the vertical direction).

KORKAR KERKER E VOOR

In This implies that d is continuous on $c_{Feigenbaum}$, 1/4.

- \blacktriangleright (Ruelle): d is real-analytic in each hyperbolic component.
- \triangleright (Bodart, Z.) d is continuous from the left at 1/4
- \triangleright (Douady, Sentenac, Z.) d is discontinuous from the right at 1/4.
- \triangleright (McMullen) d is continuous at any real parabolic point with two petals (but discontinuous along the vertical direction).

KORKAR KERKER E VOOR

In This implies that d is continuous on $c_{Feigenbaum}$, $1/4$.

K ロ X イロ X K ミ X K ミ X ミ X Y Q Q Q

K ロ X イロ X K ミ X K ミ X ミ X Y Q Q Q

 \blacktriangleright (Havard-Zinsmeister) With the information that $d(1/4) > 1$ and $d(1/4) < 3/2$, we get, for c close to $1/4$, $c < 1/4$

$$
\frac{1}{K} \leq \frac{d'(c)}{(1/4 - c)^{d(1/4) - 3/2}} \leq K
$$

for some $K > 1$.

 \blacktriangleright (Jaksztas) With the information that $d(-3/4) < 4/3$ we get

$$
\frac{1}{K} \le \frac{-d'(c)}{|c+3/4|^{\frac{3}{2}d(-3/4)-2}} \le K,
$$

KORK ERKER ADE YOUR

 \blacktriangleright (Havard-Zinsmeister) With the information that $d(1/4) > 1$ and $d(1/4) < 3/2$, we get, for c close to $1/4$, $c < 1/4$

$$
\frac{1}{K} \leq \frac{d'(c)}{(1/4-c)^{d(1/4)-3/2}} \leq K
$$

for some $K > 1$.

 \blacktriangleright (Jaksztas) With the information that $d(-3/4) < 4/3$ we get for c close to $-3/4$

$$
\frac{1}{K}\leq \frac{-d'(c)}{|c+3/4|^{\frac{3}{2}d(-3/4)-2}}\leq K,
$$

KORK ERKER ADE YOUR

for some $K > 1$.

Theorem (Jaksztas, Z.): Let c_0 be a real parameter which is parabolic with two petals: then

1. if $d(c_0) < 4/3$,

$$
\lim_{c \to c_0 \pm 0} \frac{d'(c)}{|c - c_0|^{\frac{3}{2}d(c_0) - 2}} = -K_{\pm},
$$

with $K_{+} > K_{-} > 0$.

$$
\lim_{c\to c_0\pm 0}\frac{d'(c)}{-\log(|c-c_0|)}=-K_{\pm},
$$

KORK ERKER ADE YOUR

Theorem (Jaksztas, Z.): Let c_0 be a real parameter which is parabolic with two petals: then

1. if $d(c_0) < 4/3$,

$$
\lim_{c \to c_0 \pm 0} \frac{d'(c)}{|c - c_0|^{\frac{3}{2}d(c_0) - 2}} = -K_{\pm},
$$

with $K_{+} > K_{-} > 0$.

2. if
$$
d(c_0) = 4/3
$$
 then

$$
\lim_{c\to c_0\pm 0}\frac{d'(c)}{-\log(|c-c_0|)}=-K_\pm,
$$

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

with $K_{+} > K_{-} > 0$.

Theorem (Jaksztas, Z.): Let c_0 be a real parameter which is parabolic with two petals: then

1. if $d(c_0) < 4/3$,

$$
\lim_{c \to c_0 \pm 0} \frac{d'(c)}{|c - c_0|^{\frac{3}{2}d(c_0) - 2}} = -K_{\pm},
$$

with $K_{+} > K_{-} > 0$.

2. if
$$
d(c_0) = 4/3
$$
 then

$$
\lim_{c\to c_0\pm 0}\frac{d'(c)}{-\log(|c-c_0|)}=-K_\pm,
$$

KORKAR KERKER E VOOR

with $K_{+} > K_{-} > 0$. 3. if $d(c_0) > 4/3$ then d is C^1 on a neighbourhood of c_0 .

- ► Let (F_λ) , $\lambda \in \Lambda$ a disk $\subset \mathbb{C}$ be a holomorphic family of hyperbolic polynomials with same degree d.
- \blacktriangleright If $\lambda_0 \in \Lambda$ there exists a holomorphic motion φ_λ of \mathcal{I}_{λ_i} such

$$
\varphi_{\lambda}\circ F_{\lambda_0}=F_{\lambda}\circ\varphi_{\lambda}.
$$

 \blacktriangleright Let $X=\mathcal{I}_{\lambda_{l}},\; T=F_{\lambda_{0}}$ and consider the potential function

$$
P(T, \Phi) = \lim_{n \to \infty} \frac{1}{n} \log \sum_{y \in T^{-n}(x)} \exp S_n \Phi(y),
$$

KORK ERKER ADE YOUR

where
$$
S_n \Phi = \sum_{k=0}^{n-1} \Phi \circ T^k
$$
.

- ► Let (F_λ) , $\lambda \in \Lambda$ a disk $\subset \mathbb{C}$ be a holomorphic family of hyperbolic polynomials with same degree d.
- If $\lambda_0 \in \Lambda$ there exists a holomorphic motion φ_λ of \mathcal{I}_{λ} , such that $\varphi_{\lambda_0} = id$ and

$$
\varphi_{\lambda}\circ F_{\lambda_0}=F_{\lambda}\circ \varphi_{\lambda}.
$$

 \blacktriangleright Let $X=\mathcal{I}_{\lambda_{l}},\; T=F_{\lambda_{0}}$ and consider the potential function

 \triangleright The topological pressure is defined as

$$
P(T, \Phi) = \lim_{n \to \infty} \frac{1}{n} \log \sum_{y \in T^{-n}(x)} \exp S_n \Phi(y),
$$

where
$$
S_n \Phi = \sum_{k=0}^{n-1} \Phi \circ T^k
$$
.

- ► Let (F_λ) , $\lambda \in \Lambda$ a disk $\subset \mathbb{C}$ be a holomorphic family of hyperbolic polynomials with same degree d.
- If $\lambda_0 \in \Lambda$ there exists a holomorphic motion φ_λ of \mathcal{I}_{λ} , such that $\varphi_{\lambda_0} = id$ and

$$
\varphi_{\lambda}\circ F_{\lambda_0}=F_{\lambda}\circ \varphi_{\lambda}.
$$

 \blacktriangleright Let $X = \mathcal{I}_{\lambda_i}, \mathcal{T} = \mathcal{F}_{\lambda_0}$ and consider the potential function $\Phi = -\log|F_{\lambda}'(\varphi_{\lambda})|.$

 \triangleright The topological pressure is defined as

$$
P(T, \Phi) = \lim_{n \to \infty} \frac{1}{n} \log \sum_{y \in T^{-n}(x)} \exp S_n \Phi(y),
$$

KORKAR KERKER EL VOLO

where
$$
S_n \Phi = \sum_{k=0}^{n-1} \Phi \circ T^k
$$
.

- ► Let (F_λ) , $\lambda \in \Lambda$ a disk $\subset \mathbb{C}$ be a holomorphic family of hyperbolic polynomials with same degree d.
- If $\lambda_0 \in \Lambda$ there exists a holomorphic motion φ_λ of \mathcal{I}_{λ} , such that $\varphi_{\lambda_0} = id$ and

$$
\varphi_{\lambda}\circ F_{\lambda_0}=F_{\lambda}\circ \varphi_{\lambda}.
$$

 \blacktriangleright Let $X = \mathcal{I}_{\lambda_i}, \mathcal{T} = \mathcal{F}_{\lambda_0}$ and consider the potential function $\Phi = -\log|F_{\lambda}'(\varphi_{\lambda})|.$

 \triangleright The topological pressure is defined as

$$
P(T, \Phi) = \lim_{n \to \infty} \frac{1}{n} \log \sum_{y \in T^{-n}(x)} \exp S_n \Phi(y),
$$

where $S_n \Phi = \sum_{k=0}^{n-1} \Phi \circ \mathcal{T}^k$.

.
◆ ロ ▶ → *덴* ▶ → 경 ▶ → 경 ▶ │ 경 │ ◇ 9,9,0°

► The function $t \mapsto P(T, t\Phi)$ is convex decreasing from $+\infty$ to $-\infty$, so it vanishes once and only once.

- \triangleright Theorem (Bowen): The unique zero of this function is the
- \triangleright Ruelle operator:

$$
\mathcal{L}_{\Phi}(u)(x) = \sum_{y \in \mathcal{T}^{-1}(x)} \exp \Phi(y) u(y).
$$

KORK ERKER ADE YOUR

- **►** The function $t \mapsto P(T, t\Phi)$ is convex decreasing from $+\infty$ to $-\infty$, so it vanishes once and only once.
- \triangleright Theorem (Bowen): The unique zero of this function is the Hausdorff dimension of \mathcal{I}_{λ} .

 \triangleright Ruelle operator:

$$
\mathcal{L}_{\Phi}(u)(x) = \sum_{y \in \mathcal{T}^{-1}(x)} \exp \Phi(y) u(y).
$$

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Perron-Frobenius-Ruelle theorem: $\beta = \exp P(T, \Phi)$ is a

- **►** The function $t \mapsto P(T, t\Phi)$ is convex decreasing from $+\infty$ to $-\infty$, so it vanishes once and only once.
- \triangleright Theorem (Bowen): The unique zero of this function is the Hausdorff dimension of \mathcal{I}_{λ} .
- \blacktriangleright Ruelle operator:

$$
\mathcal{L}_{\Phi}(u)(x) = \sum_{y \in \mathcal{T}^{-1}(x)} \exp \Phi(y) u(y).
$$

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Perron-Frobenius-Ruelle theorem: $\beta = \exp P(T, \Phi)$ is a

- **►** The function $t \mapsto P(T, t\Phi)$ is convex decreasing from $+\infty$ to $-\infty$, so it vanishes once and only once.
- \triangleright Theorem (Bowen): The unique zero of this function is the Hausdorff dimension of \mathcal{I}_{λ} .
- \blacktriangleright Ruelle operator:

$$
\mathcal{L}_{\Phi}(u)(x) = \sum_{y \in \mathcal{T}^{-1}(x)} \exp \Phi(y) u(y).
$$

KORKAR KERKER E VOOR

Perron-Frobenius-Ruelle theorem: $\beta = \exp P(T, \Phi)$ is a simple eigenvalue associated to an eigenvector $h_{\Phi} > 0$.

- **I** There exists a unique probability measure ω_{Φ} such that $\mathcal{L}^*(\omega_{\Phi}) = \beta \omega_{\Phi}.$
- If $\beta = 1$, i.e. if t is the dimension then

$$
\mu_{\Phi} = h_{\Phi}\omega_{\Phi}
$$

▶ Parry-Pollicott:

$$
\frac{d}{dt}(P(T, \Psi + t\Phi)) = \frac{\int_X \Phi d\mu_{\Psi + t\Phi}}{\mu_{\Psi + t\Phi}(X)}
$$

$$
d'(\lambda) = -\frac{d(\lambda)}{\int_X \log |F'_{\lambda}(\varphi_{\lambda})| d\mu_{\Phi_{\lambda}}} \int_X \frac{d}{d\lambda} \log |F'_{\lambda}(\varphi_{\lambda})| d\mu_{\Phi_{\lambda}}.
$$

- **I** There exists a unique probability measure ω_{Φ} such that $\mathcal{L}^*(\omega_{\Phi}) = \beta \omega_{\Phi}.$
- If $\beta = 1$, i.e. if t is the dimension then

$$
\mu_{\Phi} = h_{\Phi}\omega_{\Phi}
$$

is a T-invariant measure.

▶ Parry-Pollicott:

$$
\frac{d}{dt}(P(T, \Psi + t\Phi)) = \frac{\int_X \Phi d\mu_{\Psi + t\Phi}}{\mu_{\Psi + t\Phi}(X)}
$$

► Let $\Phi_{\lambda} = -d(\lambda) \log |F'_{\lambda}(\varphi_{\lambda})|$.

$$
d'(\lambda) = -\frac{d(\lambda)}{\int_X \log |F'_{\lambda}(\varphi_{\lambda})| d\mu_{\Phi_{\lambda}}} \int_X \frac{d}{d\lambda} \log |F'_{\lambda}(\varphi_{\lambda})| d\mu_{\Phi_{\lambda}}.
$$

- **I** There exists a unique probability measure ω_{Φ} such that $\mathcal{L}^*(\omega_{\Phi}) = \beta \omega_{\Phi}.$
- If $\beta = 1$, i.e. if t is the dimension then

$$
\mu_{\Phi} = h_{\Phi}\omega_{\Phi}
$$

is a T-invariant measure.

 \blacktriangleright Parry-Pollicott:

$$
\frac{d}{dt}(P(T,\Psi+t\Phi))=\frac{\int_X \Phi d\mu_{\Psi+t\Phi}}{\mu_{\Psi+t\Phi}(X)}.
$$

► Let $\Phi_{\lambda} = -d(\lambda) \log |F'_{\lambda}(\varphi_{\lambda})|$. \blacktriangleright Havard, Z.:

$$
d'(\lambda) = -\frac{d(\lambda)}{\int_X \log |F'_{\lambda}(\varphi_{\lambda})| d\mu_{\Phi_{\lambda}}} \int_X \frac{d}{d\lambda} \log |F'_{\lambda}(\varphi_{\lambda})| d\mu_{\Phi_{\lambda}}.
$$

- **I** There exists a unique probability measure ω_{Φ} such that $\mathcal{L}^*(\omega_{\Phi}) = \beta \omega_{\Phi}.$
- If $\beta = 1$, i.e. if t is the dimension then

$$
\mu_{\Phi} = h_{\Phi}\omega_{\Phi}
$$

is a T-invariant measure.

 \blacktriangleright Parry-Pollicott:

$$
\frac{d}{dt}(P(T,\Psi+t\Phi))=\frac{\int_X \Phi d\mu_{\Psi+t\Phi}}{\mu_{\Psi+t\Phi}(X)}.
$$

► Let $\Phi_{\lambda} = -d(\lambda) \log |F'_{\lambda}(\varphi_{\lambda})|$.

 \blacktriangleright Havard, Z.:

$$
d'(\lambda) = -\frac{d(\lambda)}{\int_X \log |F'_{\lambda}(\varphi_{\lambda})| d\mu_{\Phi_{\lambda}}} \int_X \frac{d}{d\lambda} \log |F'_{\lambda}(\varphi_{\lambda})| d\mu_{\Phi_{\lambda}}.
$$

- **I** There exists a unique probability measure ω_{Φ} such that $\mathcal{L}^*(\omega_{\Phi}) = \beta \omega_{\Phi}.$
- If $\beta = 1$, i.e. if t is the dimension then

$$
\mu_{\Phi} = h_{\Phi}\omega_{\Phi}
$$

is a T-invariant measure.

 \blacktriangleright Parry-Pollicott:

$$
\frac{d}{dt}(P(T,\Psi+t\Phi))=\frac{\int_X \Phi d\mu_{\Psi+t\Phi}}{\mu_{\Psi+t\Phi}(X)}.
$$

► Let $\Phi_{\lambda} = -d(\lambda) \log |F'_{\lambda}(\varphi_{\lambda})|$.

 \blacktriangleright Havard, Z.:

$$
d'(\lambda) = -\frac{d(\lambda)}{\int_X \log |F'_{\lambda}(\varphi_{\lambda})| d\mu_{\Phi_{\lambda}}} \int_X \frac{d}{d\lambda} \log |F'_{\lambda}(\varphi_{\lambda})| d\mu_{\Phi_{\lambda}}.
$$

The bifurcation: One petal case

K ロ X イロ X K ミ X K ミ X ミ X Y Q Q Q

K ロ X イロ X K ミ X K ミ X ミ X Y Q Q Q

- In Let f_{c0} have a parabolic cycle of length k. Let $\alpha(c_0)$ be an element of this cycle.
- \blacktriangleright $(f_{c_0}^k)'(\alpha(c_0)) = \pm 1$ and -1 corresponds to two petals.
- \blacktriangleright Since $(f_{c_0}^k)'(\alpha(c_0)) \neq 1$ there exists a nbhd U of c_0 and a
-
-

$$
F_{-1}^2(z) = z - 2(a^2 + b)z^3 + \dots
$$

 2990

- In Let f_{c0} have a parabolic cycle of length k. Let $\alpha(c_0)$ be an element of this cycle.
- ► $(f_{c_0}^k)'(\alpha(c_0)) = \pm 1$ and -1 corresponds to two petals.
- \blacktriangleright Since $(f_{c_0}^k)'(\alpha(c_0)) \neq 1$ there exists a nbhd U of c_0 and a
- \triangleright c_0 lies between two hyperbolic components of the Mandelbrot
-

$$
F_{-1}^2(z) = z - 2(a^2 + b)z^3 + \dots
$$

 2990

- In Let f_{c0} have a parabolic cycle of length k. Let $\alpha(c_0)$ be an element of this cycle.
- ► $(f_{c_0}^k)'(\alpha(c_0)) = \pm 1$ and -1 corresponds to two petals.
- \blacktriangleright Since $(f_{c_0}^k)'(\alpha(c_0)) \neq 1$ there exists a nbhd U of c_0 and a holomorphic function α on U so that for $c \in U$, $\alpha(c)$ is an element of a k-cycle.
- \triangleright c₀ lies between two hyperbolic components of the Mandelbrot
- \blacktriangleright Now we change parameter from c to $\lambda = (f_c^k)'(\alpha(c))$. We get

$$
F_{-1}^2(z) = z - 2(a^2 + b)z^3 + \dots
$$

AD A 4 4 4 5 A 5 A 5 A 4 D A 4 D A 4 P A 4 5 A 4 5 A 5 A 4 A 4 A 4 A

- In Let f_{c0} have a parabolic cycle of length k. Let $\alpha(c_0)$ be an element of this cycle.
- ► $(f_{c_0}^k)'(\alpha(c_0)) = \pm 1$ and -1 corresponds to two petals.
- \blacktriangleright Since $(f_{c_0}^k)'(\alpha(c_0)) \neq 1$ there exists a nbhd U of c_0 and a holomorphic function α on U so that for $c \in U$, $\alpha(c)$ is an element of a k-cycle.
- \triangleright c₀ lies between two hyperbolic components of the Mandelbrot set, $W_l,~W_r$ and we may assume that $W_l \cup W_r \subset U.$ Then $\alpha(\mathsf{c})$ is attracting if $\mathsf{c}\in\mathsf{W}_{\mathsf{r}}$ and repelling if $\mathsf{c}\in\mathsf{W}_{\mathsf{r}}.$
- \blacktriangleright Now we change parameter from c to $\lambda = (f_c^k)'(\alpha(c))$. We get

$$
F_{-1}^2(z) = z - 2(a^2 + b)z^3 + \dots
$$

► Because the critical orbits of F_{λ} are eventually real $a^2 + b$ is

- In Let f_{c0} have a parabolic cycle of length k. Let $\alpha(c_0)$ be an element of this cycle.
- ► $(f_{c_0}^k)'(\alpha(c_0)) = \pm 1$ and -1 corresponds to two petals.
- \blacktriangleright Since $(f_{c_0}^k)'(\alpha(c_0)) \neq 1$ there exists a nbhd U of c_0 and a holomorphic function α on U so that for $c \in U$, $\alpha(c)$ is an element of a k-cycle.
- \triangleright c₀ lies between two hyperbolic components of the Mandelbrot set, $W_l,~W_r$ and we may assume that $W_l \cup W_r \subset U.$ Then $\alpha(\mathsf{c})$ is attracting if $\mathsf{c}\in\mathsf{W}_{\mathsf{r}}$ and repelling if $\mathsf{c}\in\mathsf{W}_{\mathsf{r}}.$
- \blacktriangleright Now we change parameter from c to $\lambda = (f_c^k)'(\alpha(c))$. We get $F_{\lambda}(z) = \lambda z + a z^2 + b z^3$ and we get

$$
F_{-1}^2(z) = z - 2(a^2 + b)z^3 + \dots
$$

► Because the critical orbits of F_{λ} are eventually real $a^2 + b$ is

- In Let f_{c0} have a parabolic cycle of length k. Let $\alpha(c_0)$ be an element of this cycle.
- ► $(f_{c_0}^k)'(\alpha(c_0)) = \pm 1$ and -1 corresponds to two petals.
- \blacktriangleright Since $(f_{c_0}^k)'(\alpha(c_0)) \neq 1$ there exists a nbhd U of c_0 and a holomorphic function α on U so that for $c \in U$, $\alpha(c)$ is an element of a k-cycle.
- \triangleright c₀ lies between two hyperbolic components of the Mandelbrot set, $W_l,~W_r$ and we may assume that $W_l \cup W_r \subset U.$ Then $\alpha(\mathsf{c})$ is attracting if $\mathsf{c}\in\mathsf{W}_{\mathsf{r}}$ and repelling if $\mathsf{c}\in\mathsf{W}_{\mathsf{r}}.$
- \blacktriangleright Now we change parameter from c to $\lambda = (f_c^k)'(\alpha(c))$. We get $F_{\lambda}(z) = \lambda z + a z^2 + b z^3$ and we get

$$
F_{-1}^2(z) = z - 2(a^2 + b)z^3 + \dots
$$

► Because the critical orbits of F_λ are eventually real $a^2 + b$ is positive and we call scaling factor the quantity $A = \sqrt{a^2 + b^2}$ (which is equal to 1 for $c_0 = -3/4$). **AD A 4 4 4 5 A 5 A 5 A 4 D A 4 D A 4 P A 4 5 A 4 5 A 5 A 4 A 4 A 4 A**

For λ close to -1 but different therre exists a two-cycle (p_λ^+) ϕ_λ^+ , $p_\lambda^ (\lambda_{\lambda}^-)$ which tends to 0 as λ tends to $-1.$

 \triangleright We define $\delta_{\lambda} = 1 + \lambda$: then

$$
\rho_{\lambda}^{\pm}=\pm\frac{\sqrt{-\delta_{\lambda}}}{A}+O(\delta_{\lambda}).
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

- ► For λ close to -1 but different therre exists a two-cycle (p_λ^+) ϕ_λ^+ , $p_\lambda^ (\lambda_{\lambda}^-)$ which tends to 0 as λ tends to $-1.$
- \triangleright We define $\delta_{\lambda} = 1 + \lambda$: then

$$
p_\lambda^\pm=\pm\frac{\sqrt{-\delta_\lambda}}{A}+O(\delta_\lambda).
$$

► Conjugating F_λ by the right Möbius map we may assume that $\pm \frac{\sqrt{-\delta_{\lambda}}}{A}$ are the fixed points of F_{λ}^2 .

 \triangleright We then define the "Fatou" coordinates as

$$
Z_{\lambda} = \frac{1}{2\lambda} \log \big(1 - \frac{\delta_{\lambda}}{A^2 z^2} \big).
$$

 \blacktriangleright These maps conjugate F_{λ}^2 to a map close to a translation by 2

- ► Conjugating F_λ by the right Möbius map we may assume that $\pm \frac{\sqrt{-\delta_{\lambda}}}{A}$ are the fixed points of F_{λ}^2 .
- \triangleright We then define the "Fatou" coordinates as

$$
Z_{\lambda} = \frac{1}{2\lambda} \log \big(1 - \frac{\delta_{\lambda}}{A^2 z^2} \big).
$$

 \blacktriangleright These maps conjugate F_{λ}^2 to a map close to a translation by 2

riangleright notice that $z = Z_{\lambda}^{-1}$

- ► Conjugating F_λ by the right Möbius map we may assume that $\pm \frac{\sqrt{-\delta_{\lambda}}}{A}$ are the fixed points of F_{λ}^2 .
- \triangleright We then define the "Fatou" coordinates as

$$
Z_{\lambda} = \frac{1}{2\lambda} \log \big(1 - \frac{\delta_{\lambda}}{A^2 z^2} \big).
$$

 \blacktriangleright These maps conjugate F_{λ}^2 to a map close to a translation by 2 near p_{λ}^{\pm} $\frac{\pm}{\lambda}$.

KID KA KERKER E VOOR

riangleright notice that $z = Z_{\lambda}^{-1}$

- ► Conjugating F_λ by the right Möbius map we may assume that $\pm \frac{\sqrt{-\delta_{\lambda}}}{A}$ are the fixed points of F_{λ}^2 .
- \triangleright We then define the "Fatou" coordinates as

$$
Z_{\lambda} = \frac{1}{2\lambda} \log \big(1 - \frac{\delta_{\lambda}}{A^2 z^2} \big).
$$

 \blacktriangleright These maps conjugate F_{λ}^2 to a map close to a translation by 2 near p_{λ}^{\pm} $\frac{\pm}{\lambda}$.

KID KA KERKER E VOOR

rian notice that $z = Z_{\lambda}^{-1}$ $\chi^{-1}(Z) = \frac{1}{A}(\frac{\delta_{\lambda}}{1-e^{2\delta_{\lambda}}}$ $\frac{\delta_\lambda}{1-e^{2\delta_\lambda Z}}$)^{1/2}.

 \triangleright We define a partition of a neighbourhood of the periodic points of F_{λ} which become the parabolic fixed point for $\lambda = -1$.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

i.

 \triangleright We define a partition of a neighbourhood of the periodic points of F_{λ} which become the parabolic fixed point for $\lambda = -1$.

i.

 \triangleright We define a partition of a neighbourhood of the periodic points of F_{λ} which become the parabolic fixed point for $\lambda = -1$.

There exist $K, K_1, K_2 > 0$ and $\eta > 0$ such that for every $n \ge 1$ and $|\delta_{\lambda}| < \eta$ we have

$$
K_1|\delta_{\lambda}|e^{-\mathsf{Kn}|\delta_{\lambda}|}\leq |\mathsf{C}_n(\lambda)|\leq K_2 n^{-3/2}.
$$

イロト イ御 トイミト イミト ニミー りんぴ

► We consider the induced map $F^* = F^k$ on $|C_k|$.

- \triangleright This induced dynamics is hyperbolic and thus there is an
- \triangleright We may then write

$$
\mu_{\lambda}(C_n) = \sum_{k=n}^{\infty} \mu_{\lambda}^*(C_n) \sim \sum_{k=n}^{\infty} \omega_{\lambda}(C_n)
$$

KORK ERKER ADE YOUR

- ► We consider the induced map $F^* = F^k$ on $|C_k|$.
- \triangleright This induced dynamics is hyperbolic and thus there is an F^* -invariant measure μ^* which is absolutely continuous wrt the conformal (=Hausdorff) measure with Radon-Nykodim derivative bounded and away from 0.
- \triangleright We may then write

KORKAR KERKER EL VOLO

- ► We consider the induced map $F^* = F^k$ on $|C_k|$.
- \triangleright This induced dynamics is hyperbolic and thus there is an F^* -invariant measure μ^* which is absolutely continuous wrt the conformal (=Hausdorff) measure with Radon-Nykodim derivative bounded and away from 0.
- \triangleright We may then write

$$
\mu_{\lambda}(C_n) = \sum_{k=n}^{\infty} \mu_{\lambda}^*(C_n) \sim \sum_{k=n}^{\infty} \omega_{\lambda}(C_n)
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

► For $h \geq 1$ and $u \neq 0$ let us define

$$
\Lambda_0^h(u) = \left(\frac{e^{-2u}}{|1 - e^{-2u}|^{3/2}}\right)^h.
$$

 \triangleright We have the following estimates:

$$
(\delta_{\lambda} > 0) : \frac{\mu_{\lambda}(C_n)}{\delta_{\lambda}^{3d(\lambda)/2 - 1}} \sim M \int_{n\delta_{\lambda}}^{\infty} \Lambda_0^{d(\lambda)} du,
$$

$$
(\delta_{\lambda} < 0) : \frac{\mu_{\lambda}(C_n)}{\delta_{\lambda}^{3d(\lambda)/2 - 1}} \sim M \int_{-\infty}^{n\delta_{\lambda}} \Lambda_0^{d(\lambda)} du.
$$

K ロ X K (P) X (E) X (E) X (E) X (P) Q (P)

► For $h \geq 1$ and $u \neq 0$ let us define

$$
\Lambda_0^h(u) = \left(\frac{e^{-2u}}{|1 - e^{-2u}|^{3/2}}\right)^h.
$$

 \triangleright We have the following estimates:

$$
(\delta_{\lambda} > 0) : \frac{\mu_{\lambda}(C_n)}{\delta_{\lambda}^{3d(\lambda)/2 - 1}} \sim M \int_{n\delta_{\lambda}}^{\infty} \Lambda_0^{d(\lambda)} du,
$$

$$
(\delta_{\lambda} < 0) : \frac{\mu_{\lambda}(C_n)}{\delta_{\lambda}^{3d(\lambda)/2 - 1}} \sim M \int_{-\infty}^{n\delta_{\lambda}} \Lambda_0^{d(\lambda)} du.
$$

K ロ X K (P) X (E) X (E) X (E) X (P) Q (P)

 \triangleright We return to the formula giving the derivative of the dimension: we need to estimate

$$
\frac{\partial}{\partial \lambda}(F'_{\lambda}(\varphi_{\lambda})) = (\frac{\partial}{\partial \lambda}F' \lambda)(\varphi_{\lambda}) + \dot{\varphi}_{\lambda}F''_{\lambda}(\varphi_{\lambda}).
$$

$$
\dot{\varphi}_{\lambda}=-\sum_{j=1}^{\infty}\frac{\dot{F_{\lambda}}(F_{\lambda}^{j-1}(\varphi_{\lambda}))}{F_{\lambda}^{j\prime}(\varphi_{\lambda})}.
$$

It happens that the "principal part" of $\dot{\varphi}$ can be written as

$$
\psi_{\lambda}(z)=-\sum_{j=1}^n\frac{F_{\lambda}^{j-1}(z)}{F_{\lambda}^{j}(z)},
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

I

 \triangleright We return to the formula giving the derivative of the dimension: we need to estimate

$$
\frac{\partial}{\partial \lambda}(F'_{\lambda}(\varphi_{\lambda})) = (\frac{\partial}{\partial \lambda}F' \lambda)(\varphi_{\lambda}) + \dot{\varphi}_{\lambda}F''_{\lambda}(\varphi_{\lambda}).
$$

$$
\dot{\varphi}_{\lambda} = -\sum_{j=1}^{\infty} \frac{\dot{F}_{\lambda}(F_{\lambda}^{j-1}(\varphi_{\lambda}))}{F_{\lambda}^{j}(\varphi_{\lambda})}.
$$

It happens that the "principal part" of $\dot{\varphi}$ can be written as

$$
\psi_{\lambda}(z)=-\sum_{j=1}^n\frac{F_{\lambda}^{j-1}(z)}{F_{\lambda}^{j}(z)},
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

i.

 \triangleright We return to the formula giving the derivative of the dimension: we need to estimate

$$
\frac{\partial}{\partial \lambda}(F'_{\lambda}(\varphi_{\lambda})) = (\frac{\partial}{\partial \lambda}F' \lambda)(\varphi_{\lambda}) + \dot{\varphi}_{\lambda}F''_{\lambda}(\varphi_{\lambda}).
$$

$$
\dot{\varphi}_{\lambda} = -\sum_{j=1}^{\infty} \frac{\dot{F}_{\lambda}(F_{\lambda}^{j-1}(\varphi_{\lambda}))}{F_{\lambda}^{j}(\varphi_{\lambda})}.
$$

It happens that the "principal part" of $\dot{\varphi}$ can be written as

$$
\psi_{\lambda}(z)=-\sum_{j=1}^n\frac{F_{\lambda}^{j-1}(z)}{F_{\lambda}^{j}(z)},
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

for $z = \varphi_{\lambda}(s) \in C_n(\lambda)$.

• We define
$$
\beta_{\lambda}(z) = \text{Im}z \cdot \dot{\psi}_{\lambda}(z)
$$
.

 \blacktriangleright It can be shown that

$$
\operatorname{Re}(\frac{\frac{\partial}{\partial\lambda}(F_{\lambda}'(\varphi_{\lambda}))}{F_{\lambda}'(\varphi_{\lambda}))} \sim 6A^2\beta_{\lambda}(\varphi_{\lambda}) - 1.
$$

• Moreover
$$
\beta_{\lambda}(z) \sim \frac{\Gamma(n\delta_{\lambda})}{A^2}
$$
, $z \in C_n(\lambda)$, where

$$
\Gamma(x) = \frac{e^{2x} - 1 - 2x}{2(e^{2x} - 1)^2} e^{2x}.
$$

K ロ K イロ K K モ K K モ K エ エ エ イ の Q Q C

• We define
$$
\beta_{\lambda}(z) = \text{Im}z \cdot \dot{\psi}_{\lambda}(z)
$$
.

 \blacktriangleright It can be shown that

$$
\mathrm{Re}(\frac{\frac{\partial}{\partial\lambda}(F_{\lambda}'(\varphi_{\lambda}))}{F_{\lambda}'(\varphi_{\lambda}))}\sim 6A^2\beta_{\lambda}(\varphi_{\lambda})-1.
$$

► Moreover $\beta_{\lambda}(z) \sim \frac{\Gamma(n\delta_{\lambda})}{A^2}$

$$
\Gamma(x) = \frac{e^{2x} - 1 - 2x}{2(e^{2x} - 1)^2} e^{2x}.
$$

K ロ X K (P) X (E) X (E) X (E) X (P) Q (P)

• We define
$$
\beta_{\lambda}(z) = \text{Im}z \cdot \dot{\psi}_{\lambda}(z)
$$
.

 \blacktriangleright It can be shown that

$$
\mathrm{Re}(\frac{\frac{\partial}{\partial\lambda}(F_{\lambda}'(\varphi_{\lambda}))}{F_{\lambda}'(\varphi_{\lambda}))}\sim 6A^2\beta_{\lambda}(\varphi_{\lambda})-1.
$$

• Moreover
$$
\beta_{\lambda}(z) \sim \frac{\Gamma(n\delta_{\lambda})}{A^2}
$$
, $z \in C_n(\lambda)$, where

$$
\Gamma(x) = \frac{e^{2x} - 1 - 2x}{2(e^{2x} - 1)^2} e^{2x}.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q ·

$$
\triangleright \text{ we define } G_+^h(s) = M \int_s^{+\infty} \Lambda_0^h(u) du, s \ge 0, G_-^h(s) = M \int_{-\infty}^s \Lambda_0^h(u) du, s \le 0.
$$

For $h \in [1, 4/3)$ we define

$$
\Theta_+(h) = \int_0^{+\infty} (6\Gamma(s)-1) G_+^h(s) ds,
$$

$$
\Theta_{-}(h)=\int_{-\infty}^{s}(6\Gamma(s)-1)G_{-}^{h}(s)ds.
$$

$$
|\delta_{\lambda}|^{-3d(\lambda)/2+2} (\int \log |F'_{\lambda}| d\mu_{\lambda}) d'(\lambda) \sim \Theta_{\pm}(d(-1)),
$$

イロト イ御 トイミト イミト ニミー りんぴ

$$
\triangleright \text{ we define } G_+^h(s) = M \int_s^{+\infty} \Lambda_0^h(u) du, s \ge 0, G_-^h(s) = M \int_{-\infty}^s \Lambda_0^h(u) du, s \le 0.
$$

For $h \in [1, 4/3)$ we define

$$
\Theta_+(h) = \int_0^{+\infty} (6\Gamma(s) - 1) G_+^h(s) ds,
$$

$$
\Theta_{-}(h)=\int_{-\infty}^{s}(6\Gamma(s)-1)G_{-}^{h}(s)ds.
$$

$$
|\delta_{\lambda}|^{-3d(\lambda)/2+2} \bigl(\int \log|F_{\lambda}'| d\mu_{\lambda}\bigr) d'(\lambda) \sim \Theta_{\pm}\bigl(d(-1)\bigr),
$$

K ロ X K (P) X (E) X (E) X (E) X (P) Q (P)

I

$$
\triangleright \text{ we define } G_+^h(s) = M \int_s^{+\infty} \Lambda_0^h(u) du, s \ge 0, G_-^h(s) = M \int_{-\infty}^s \Lambda_0^h(u) du, s \le 0.
$$

For $h \in [1, 4/3)$ we define

$$
\Theta_+(h) = \int_0^{+\infty} (6\Gamma(s)-1) G_+^h(s) ds,
$$

$$
\Theta_{-}(h)=\int_{-\infty}^{s}(6\Gamma(s)-1)G_{-}^{h}(s)ds.
$$

$$
|\delta_\lambda|^{-3d(\lambda)/2+2} (\int \log |F_\lambda'| d\mu_\lambda) d'(\lambda) \sim \Theta_\pm(d(-1)),
$$

K ロ X K (P) X (E) X (E) X (E) X (P) Q (P)

where the chosen sign is the one of δ_{λ} .

$\blacktriangleright \Theta_{\pm}(1) = 0, \Theta_{\pm}(h) > 0$ if $h \in (1, 4/3), \Theta_{\pm}(4/3) = +\infty$. $\blacktriangleright \Theta_-\leq \Theta_+$ on $[1,4/3)$

KORK STRAIN A BAR SHOP

▶
$$
\Theta_{\pm}(1) = 0
$$
, $\Theta_{\pm}(h) > 0$ if $h \in (1, 4/3)$, $\Theta_{\pm}(4/3) = +\infty$.
\n▶ $\Theta_{-} \leq \Theta_{+}$ on $[1, 4/3)$

(Thanks to Carine Lucas and Thomas Haberkorn)

K ロンス 御 > ス 할 > ス 할 > 이 할

 -990